

Application Manual

AB-RTCMC-32.768kHz-EOA9-S3

DTCXO Temperature Compensated Real Time Clock/Calendar Module with SPI Interface

CONTENTS

1.0 Overview.	4
1.1 General Description	
1.2 Applications	
2.0 Block Diagram	5
2.1 Pinout	6
2.2 Pin Description	6
2.3 Functional Description	
2.4 Device Protection Diagram	
3.0 Register Organization	
3.1 Register Overview	
3.2 Control Page Register Function	
3.2.1 Control 1 (address 00hbits description)	
3.2.2 Control INT (address 01hbits description)	
3.2.3 Control INT FLAG (address 02hbits description)	
3.2.4 Control_STATUS (address 03hbits description)	
3.2.5 Control RESET (address 04hbits description).	
3.3 Watch Page Register Function	
3.3.1 Seconds, Minutes, Hours, Days, Weekdays, Months, Years Registers	
3.3.2 Data Flow Time and Date Function	
3.4 Alarm Page Register Function	
3.4.1 Seconds, Minutes, Hours, Days, Weekdays, Months, Years Alarm Registers	
3.5 Timer Page Register Function	
3.6 Temperature Page Register Function	
3.7 EEPROM Data Page Register Function	
3.8 EEPROM Control Page Register Function	
3.8.1 EEPROM Control (address 30hbits description)	
3.8.2 Xtal Offset (address 31hbits description)	
3.8.3 Xtal Temperature Coefficient (address 32hbits description)	
3.8.4 Xtal Turnover Temperature Coefficient T0 (address 33hbits description)	
3.9 RAM Data Page Register Function	
4.0 Detailed Function Description	
4.1 Power-up, Power Management and Battery Switchover	
4.1.1 Power up Sequence	
4.1.2 Supply Voltage Operating Range and Low Voltage Detection	
4.2 Reset	
4.2.1 Power-up Reset, System Reset and Self-recovery Reset	
4.2.2 Register Reset Values	
4.3 EEPROM Memory Access	
4.4 Timer Function	
4.4.1 Timer Interrupt	
4.5 Alarm Function	
4.5.1 Alarm Interrupt	
4.6 Interrupt Output INT	
4.7 Watch Enable Function	
4.8 Self-Recovery System	
4.9 Clock Output CLKOUT	
5.0 Compensation of Frequency Deviation and Frequency Drift vs Temperature	
5.1 Temperature Characteristics Tuning Fork Crystal	
5.2 Compensation Principle	
5.2.1 Thermometer and Temperature Value	38

5.2.2 Setting the Frequency Compensation Parameters	39
5.3 Method of Compensating the Frequency Deviation	40
5.3.1 Correct Method for Testing the Time Accuracy	41
5.3.2 Testing the Time Accuracy Using CLKOUT output	
5.3.3 Testing the Time Accuracy Using Interrupt Output 1Hz	42
5.4 Time Accuracy Opt: A / Opt: B	44
6.0 SPI Interface	46
6.1 SPI Interface System Configuration	46
6.2 SPI Interface Data Transmission	48
6.2.1 Command Byte Definition	48
6.2.2 SPI Interface Read/Write Examples	49
7.0 Electrical Characteristics	
7.1 Absolute Maximum Ratings	51
7.2 Frequency and Time Characteristics	
7.3 Static Characteristics	
7.4 SPI Interface Timing Characteristics	
7.5 SPI Interface Dynamic Characteristics	
8.0 Application Information	
8.1 Recommended Reflow Temperature (Lead Free Soldering)	
9.0 Packages.	
9.1 Dimension and Solderpad Layout	
9.2 Package Marking and Pin 1 Index	
10.0 Packing Information	
10.1 Carrier Tape	
10.2 Reel 7 Inch for 12mm Tape	
11.0 Handling Precautions for Crystals or Modules with embedded Crystals	61

AB-RTCMC-32.768kHz-EOA9-S3

Highly accurate, DTCXO Temperature Compensated Real Time Clock / Calendar Module with SPI Interface

1.0 OVERVIEW

- RTC module with built-in "Tuning Fork" crystal oscillating at 32.768 kHz
- Factory calibrated, all built-in Temperature Compensation circuitry

Time accuracy:	Temperature Range	Opt: A	Opt: B
•	25°C	± 3 ppm	± 3 ppm
	0° C to $+50^{\circ}$ C	± 4 ppm	± 5 ppm
	-10° C to $+60^{\circ}$ C	± 5 ppm	±10 ppm
	-40° C to $+85^{\circ}$ C	± 6 ppm	± 25 ppm
	-40°C to +125°C	±8 ppm	± 30 ppm

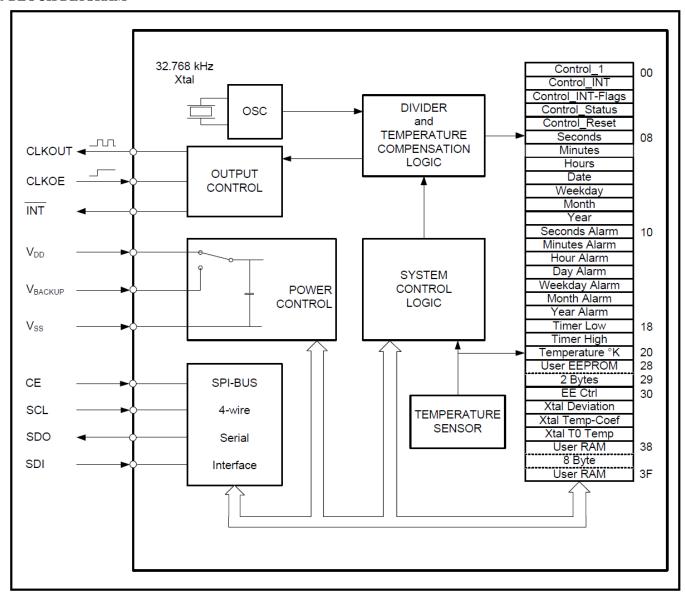
- Ultra low power consumption: 800nA typ @ $V_{DD} = 3.0 \text{V} / T_{amb} = 25^{\circ}\text{C}$
- Wide clock operating voltage: 1.3 5.5V
- Wide interface operating voltage: 1.4 5.5V
- Extended operating temperature range: -40°C to +125°C
- SPI serial interface with fast mode SCL clock frequency of 1 MHz
- Provides year, month, day, weekday, hours, minutes and seconds
- Highly versatile alarm and timer functions
- Integrated Low-Voltage Detector, Power-On Reset and Self-Recovery System
- Main Power Supply to Backup Battery switchover circuitry with Trickle Charger
- Programmable CLKOUT pins for peripheral devices (32.768 kHz / 1024 Hz / 32 Hz / 1 Hz)
- Small and compact package size: 3.7 x 2.5 x 0.9 mm. RoHS-compliant and 100% leadfree

1.1 GENERAL DESCRIPTION

The AB-RTCMC-32.768kHz-EOA9-S3 is a CMOS low power, real-time clock/calendar module with built-in Thermometer and Digital Temperature Compensation circuitry (DTCXO). The temperature compensation circuitry is factory-calibrated and greatly improves the time accuracy by compensating the frequency-deviation @ 25°C and the anticipated frequency-drift over the temperature of the embedded 32.768 kHz "Tuning-Fork" crystal, even over the extended Temperature Range -40°C to +125°C. Data is transferred serially via a SPI interface with a maximum SCL clock frequency in fast mode of 1 MHz, the built-in word address register is incremented automatically after each written or read data byte. Beyond standard RTC-functions like year, month, day, weekday, hours, minutes, seconds information, the AB-RTCMC-32.768kHz-EOA9-S3 offers highly versatile Alarm and Timer-Interrupt function, programmable Clock-Output and Low-Voltage Detector.

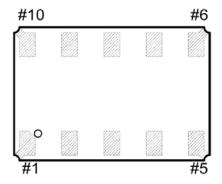
1.2. APPLICATIONS

The AB-RTCMC-32.768kHz-EOA9-S3 RTC module combines key functions with outstanding performance in a small ceramic package:


- Factory calibrated Temperature Compensation
- Extended temperature range up to +125°C
- Low Power consumption
- Smallest temperature compensated RTC module with embedded Xtal

These unique features make this product perfectly suitable for many applications:

- Automotive: Car Radio / GPS and Tracking Systems / Dashboard / Engine Controller / Car Mobile & Entertainment Systems / Tachometers
- Metering: E-meter / Heating Counter
- Outdoor: ATM & POS systems / Surveillance & Safety systems / Ticketing systems
- All kind of portable and battery operated devices
- Industrial and consumer electronics
- White goods



2.0 BLOCK DIAGRAM

2.1 PINOUT

Pin#	Function	Pin#	Function
1	CLKOE	6	V_{SS}
2	$V_{ m DD}$	7	ĪNT
3	CLKOUT	8	CE
4	SCL	9	V_{BACKUP}
5	SDO	10	SDI

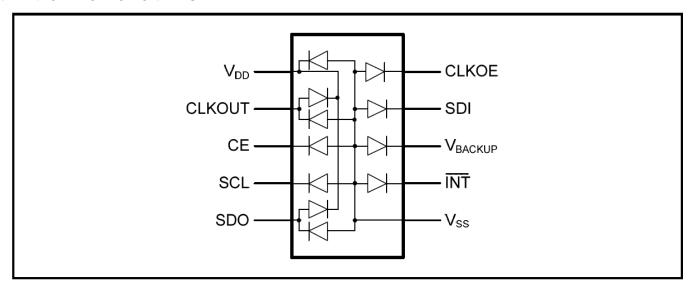
2.2 PIN DESCRIPTION

Pin No.	Pin Name	Function
1	CLKOE	CLKOUT enable/disable pin; enable is active HIGH; tie to GND when not using CLKOUT
2	V_{DD}	Positive supply voltage; positive or negative steps in supply voltage may affect oscillator performance, recommend 10 nF decoupling capacitor close to device
3	CLKOUT	Clock Output pin; CLKOUT or INT function can be selected.(Control_1; bit7; Clk/Int) CLKOUT output push-pull / INT function open-drain requiring pull-up resistor
4	SCL	Serial Clock Input pin; may float when CE inactive
5	SDO	Serial Data Output pin; push-pull; high-impedance when not driving; can be connected to SDI for single-wire data line.
6	V_{SS}	Ground
7	ĪNT	Interrupt output pin; open-drain; active LOW
8	CE	Chip Enable input; active HIGH
9	V_{BACKUP}	Backup Supply Voltage; tie to GND when not using backup supply voltage
10	SDI	Serial Data Input pin; may float when CE inactive

2.3 FUNCTIONAL DESCRIPTION

The AB-RTCMC-32.768kHz-EOA9-S3 is a highly accurate real-time clock/calendar module due to integrated temperature compensation circuitry. The built-in Thermometer and Digital Temperature Compensation circuitry (DTCXO) provides improved time-accuracy; achieved by measuring the temperature and calculating an expected correction value based on precise, factory-calibrated Crystal parameters. The compensation of the frequency deviation @ 25°C and the Crystal's frequency-drift over the temperature range are obtained by adding or subtracting 32.768 kHz oscillator clock-pulses. Beyond standard RTC-functions like year, month, day, weekday, hours, minutes, seconds information, the AB-RTCMC-32.768kHz-EOA9-S3 offers highly versatile Alarm and Timer-Interrupt function, programmable Clock-Output and Voltage-Low-Detector and a Main-Supply to Backup-Battery Switchover Circuitry and a SPI interface.

The CMOS IC contains thirty 8-bit RAM registers organized in 6 memory pages; the address counter is automatically incremented within the same memory page. All sixteen registers are designed as addressable 8-bit parallel registers, although, not all bits are implemented.



- Memory page #00 contains of five registers (memory address 00h and 04h) used as control registers
- Memory page #01 addresses 08h through 0Eh are used as counters for the clock function (seconds up to years). The Seconds,
 Minutes, Hours, Days, Weekdays, Months and Years registers are all coded in Binary-Coded-Decimal
 (BCD) format. When one of the RTC registers is read, the content of all counters is frozen to prevent faulty
 reading of the clock/calendar registers during a carry condition
- Memory page #02 addresses 10h through 16h define the alarm condition
- Memory page #03 addresses 18h and 19h are used for Timer function
- **Memory page #04** address 20h provides the thermometer reading value
- Memory page #07 addresses 38h through 3Fh are available for user data

Additionally, the CMOS-IC contains six non-volatile 8-bit EEPROM registers organized in 2 memory pages; the address counter is automatically incremented within the same memory page.

- **EEPROM page #05** addresses 28h and 29h are available for EEPROM user data
- **EEPROM page #06** contains of four registers (memory address 30h through 33h) used as non-volatile control registers. These registers contain the factory programmed parameters of the Crystal's thermal characteristics, the frequency-deviation @ ambient temperature and the Thermometer's calibration values. In favor for the best time-accuracy, the factory programmed registers (memory address 31h through 33h) shall not be changed by the user without carefully studying its function

2.4 DEVICE PROTECTION DIAGRAM

3.0 REGISTER ORGANIZATION

The registers are grouped into memory pages. The pages are addressed by the 5 most-significant-bits (MSB's bits 7-3), the 3 least-significant-bites (LSB's 2-0) select the registers within the addressed page.

30 RAM registers organized in 6 memory pages and 6 EEPROM registers organized in 2 memory pages are available. During interface access, the page address (MSB's 7 - 3) is fixed while the register address (LSB's 2 - 0) are automatically incremented. The content of all counters and registers are frozen to prevent faulty reading of the clock/calendar registers during carry condition.

The time registers in the Clock and Alarm pages are encoded in the Binary Coded Decimal format (BCD) to simplify application use. Other registers are either bit-wise or standard binary format.

3.1 REGISTER OVERVIEW

A	Address										
Page	Address	Hex	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7 - 3	Bit 2 - 0	пех									
	000	00h	Control_1	Clk/Int	TD1	TD0	SROn	EERE	TAR	TE	WE
Control	001	01h	Control_INT	X	X	X	SRIE	V2IE	V1IE	TIE	AIE
Page	010	02h	Control_INT Flag	X	X	X	SRF	V2IF	V1IF	TF	AF
00000	011	03h	Control_Status	EEbusy	X	PON	SR	V2F	V1F	X	X
	100	04h	Control_Reset	X	X	X	SysR	X	X	X	X
	000	08h	Seconds	X	40	20	10	8	4	2	1
	001	09h	Minutes	X	40	20	10	8	4	2	1
Clock	010	0Ah	Hours	X	12-24	20-PM	10	8	4	2	1
Page	011	0Bh	Days	X	X	20	10	8	4	2	1
00001	100	0Ch	Weekdays	X	X	X	X	X	4	2	1
	101	0Dh	Months	X	X	X	10	8	4	2	1
	110	0Eh	Years	X	40	20	10	8	4	2	1
	000	10h	Second Alarm	AE_S	40	20	10	8	4	2	1
	001	11h	Minute Alarm	AE_M	40	20	10	8	4	2	1
Alarm	010	12h	Hour Alarm	AE_H	X	20-PM	10	8	4	2	1
Page	011	13h	Days Alarm	AE_D	X	20	10	8	4	2	1
00010	100	14h	Weekday Alarm	AE_W	X	X	X	X	4	2	1
	101	15h	Months Alarm	AE_M	X	X	10	8	4	2	1
	110	16h	Year Alarm	AE_Y	40	20	10	8	4	2	1
Timer	000	18h	Timer Low	128	64	32	16	8	4	2	1
Page 00011	001	19h	Timer High	128	64	32	16	8	4	2	1
			<u> </u>								
Temp. Page 00100	000	20h	Temperature	128	64	32	16	8	4	2	1

(Continued)

1	Address										
Page	Address	Hex	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7 - 3	Bit 2 - 0	HEX									
EEPROM User	000	28h	EEPROM User	2 bytes of EEPROM for user data							
00101	001	29h	EEPROM User								
EEPROM	000	30h	EEPROM contr.	R80k	R20k	R5k	R1k	FD1	FD0	ThE	ThP
Control	001	31h	Xtal Offset	Sign	64	32	16	8	4	2	1
Page	010	32h	Xtal Coef	128	64	32	16	8	4	2	1
00110	011	33h	Xtal T0	X	X	32	16	8	4	2	1
RAM	000	38h					<u> </u>		<u> </u>		_
Page	:	:	User RAM	8 bytes of RAM for user data							
00111	111	3Fh									

Bit positions labeled as "X" are not implemented and will return a "0" when read.

3.2. CONTROL PAGE REGISTER FUNCTION

3.2.1 CONTROL_1 (address 00h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	Control_1	Clk/Int	TD1	TD0	SROn	EERE	TAR	TE	WE

Bit	Symbol	Value	Description	Reference
7	Clk/Int	0	Applies INT function on CLKOUT pin	See section
/	CIK/IIIt	1	Applies CLKOUT function on CLKOUT pin	4.9
6	TD1	00		
0	11/1	01	Select Source Clock for internal Countdown Timer	See section
5	TD0	10	Select Source Clock for Internal Countdown Times	4.4
		11		
4	SROn	0	Disables Self Recovery function	See section
	Siton	1	Enables Self Recovery function	4.8
3	EERE	0	Disables automatic EEPROM refresh every hour	See section
J	LEKE	1	Enables automatic EEPROM refresh every hour	4.3
2	TAR	0	Disables Countdown Timer auto-reload mode	See section
2	IAK	1	Enables Countdown Timer auto-reload mode	4.4
1	1 TE		Disables Countdown Timer	See section
1	1E	1	Enables Countdown Timer	4.4
0	WE	0	Disables 1Hz Clock Source for Watch	See section
U	WE	1	Enables 1Hz Clock Source for Watch	4.7

3.2.2 CONTROL_INT (address 01h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h	Control INT	X	X	X	SRIE	V2IE	V1IE	TIE	AIE

Bit	Symbol	Value	Description	Reference						
7 to 5	unused	X	Unused							
4	CDIE	0	Disables Self-Recovery INT	See section						
4	SRIE	1	Enables Self-Recovery INT	4.8						
2	V2IE	0	Disables VLOW2 INT; "Low Voltage 2 detection"	See section						
3		VZIE	V ZIE	1	Enables VLOW2 INT; "Low Voltage 2 detection"	4.1.2				
2	V1IE	0	Disables VLOW1 INT; "Low Voltage 1detection"	See section						
2	VIIE	VIIE	VIIE	VIIE	VIIE	VIIE	VIIE	1	Enables VLOW1 INT; "Low Voltage 1detection"	4.1.2
1	1 715 0		Disables Countdown Timer INT	See section						
1	1 TIE	1	Enables Countdown Timer INT	4.4.1						
0	AIE	0	Disables Alarm INT	See section						
U	AIE	1	Enables Alarm INT	4.5.1						

Bit positions labeled as "X" are not implemented and will return a "0" when read.

3.2.3 CONTROL_INT FLAG (address 02h...bits description)

	Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I	02h	Control INT Flag	X	X	X	SRF	V2IF	V1IF	TF	AF

Bit	Symbol	Value	Description	Reference		
7 to 5	unused	X	Unused			
		0	No Self-Recovery Interrupt generated	See section		
4	SRF	F 1	Self-Recovery Interrupt generated if possible deadlock is detected; clear flag to clear Interrupt	4.6		
		0	No VLOW2 Interrupt generated	See section		
3	V2IF	V2IF	V2IF	1	VLOW2 Interrupt generated when supply voltage drops below VLOW2 threshold	4.6
	V1IF	0	No VLOW1 Interrupt generated	See section		
2		1	VLOW1 Interrupt generated when supply voltage drops below VLOW1 threshold	4.6		
		0	No Timer Interrupt generated	See section		
1	TF	1	Timer Interrupt generated when Countdown Timer value reaches zero	4.6		
0	AF	0	No Alarm Interrupt generated	See section		
U	АГ	1	Alarm Interrupt generated when Time & Date matches Alarm setting	4.6		

Bit positions labeled as "X" are not implemented and will return a "0" when read.

3.2.4 CONTROL_STATUS (address 03h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
03h	Control_Status	EEbusy	X	PON	SR	V2F	V1F	X	X

Bit	Symbol	Value	Description	Reference			
		0	EEPROM is not busy	See section			
7	EEbusy	1	Flag is set when EEPROM page is busy due to "write" or automatic EEPROM refresh in progress	See section 4.3			
6	Unused	X	Unused				
	DOM	0	No Power-On Reset executed	See section			
5	PON	1	Flag is set at Power-On, flag must be cleared by writing "0"	4.1			
	SR	0	No Self-Recovery Reset or System Reset has been generated.	G 4:			
4		SR	SR	SR	SR 1	1	Flag is set when Self-Recovery Reset or System Reset has been generated.
		0	No VLOW2 Interrupt generated	See section			
3	V2F	1	VLOW2 Interrupt generated when supply voltage drops below VLOW2 threshold	4.6			
		0	No VLOW1 Interrupt generated	See section			
2	V1F	1	VLOW1 Interrupt generated when supply voltage drops below VLOW1 threshold	4.6			
1 to 0	unused	X	Unused				

Bit positions labeled as "X" are not implemented and will return a "0" when read.

3.2.5 CONTROL_RESET (address 04h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
04h	Control_Reset	X	X	X	SysR	X	X	X	X

Bit	Symbol	Value	ue Description				
7 to 5	unused	X	Unused				
		0	No System Reset will be executed				
4	4 SysR 1		Set bit = "1" triggers a System Reset. After the restart of the logic, the SysR will be cleared and in bit 4 "SR" in the register Control_Status will be set	See section 4.2.1			
3 to 0	unused	X	Unused				

Bit positions labeled as "X" are not implemented and will return a "0" when read.

3.3 WATCH PAGE REGISTER FUNCTION

Watch Page registers are coded in the Binary Coded Decimal (BCD) format; BCD format is used to simplify application use.

3.3.1 SECONDS, MINUTES, HOURS, DAYS, WEEKDAYS, MONTHS, YEARS REGISTER Seconds (address 08h...bits description)

on	as	(adar	ess	u8nbits	aescription	1)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
08h	Seconds	X	40	20	10	8	4	2	1

Bit	Symbol	Value	Description
7	X	-	Unused
6 to 0	Seconds	0 to 59	These registers hold the current seconds coded in BCD format

Minutes (address 09h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
09h	Minutes	X	40	20	10	8	4	2	1

Bit	Symbol	Value	Description
7	X	-	Unused
6 to 0	Minutes	0 to 59	These registers hold the current minutes coded in BCD format

Hours (address 0Ah...bits description)

ĺ	Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I	0Ah	Hours	X	12-24	20-PM	10	8	4	2	1

Bit	Symbol	Value	Description				
7	X	-	unused				
12 hour m	12 hour mode						
	12-24	0	Selects 24-hour mode				
6	12-24	1	Selects 12-hour (AM/PM) mode				
5	AM-PM	0	Indicates AM				
3		1	Indicates PM				
4 to 0	Hours ¹⁾	1 to 12	These registers hold the current hours coded in BCD format for 12 hour mode				
24 hour m	ode ²⁾						
6	12-24	0	Selects 24-hour mode				
6	12-24	1	Selects 12-hour (AM/PM) mode				
5 to 0	Hours ¹⁾	0 to 23	These registers hold the current hours coded in BCD format for 24 hour mode				

¹⁾ User is requested to pay attention to setting valid data only.

Days (address 0Bh...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Bh	Days	X	X	20	10	8	4	2	1

Bit	Symbol	Value	Description
7 and 6	X	-	unused
5 to 0	Days	1 to 31	These registers hold the current days coded in BCD format ¹⁾

¹⁾ The RTC compensates for leap years by adding a 29th day to February if the year counter contains a value which is exactly divisible by 4; including the year 00.

Weekdays (address 0Ch...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Ch	Weekdays	X	X	X	X	X	4	2	1

Bit	Symbol	Value	Description
7 to 3	X	-	unused
2 to 0	Weekdays	1 to 7	These registers hold the current weekdays coded in BCD format

Weekday 1)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sunday	X	X	X	X	X	0	0	1
Monday	X	X	X	X	X	0	1	0
Tuesday	X	X	X	X	X	0	1	1
Wednesday	X	X	X	X	X	1	0	0
Thursday	X	X	X	X	X	1	0	1
Friday	X	X	X	X	X	1	1	0
Saturday	X	X	X	X	X	1	1	1

¹⁾ These bits may be re-assigned by the user.

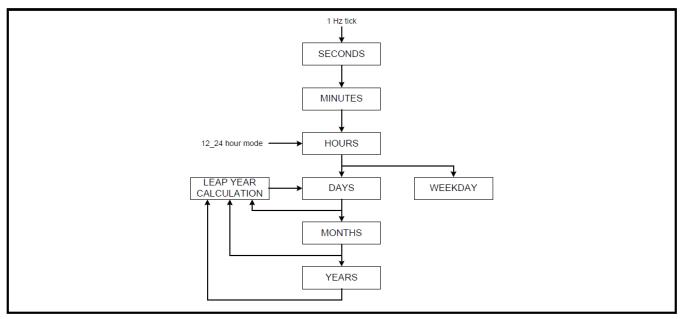
Months (address 0Dh...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Dh	Months	X	X	X	10	8	4	2	1

Bit	Symbol	Value	Description
7 to 5	X	-	unused
4 to 0	Months	1 to 12	These registers hold the current months coded in BCD format 1)

Month	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
January	X	X	X	0	0	0	0	1
February	X	X	X	0	0	0	1	0
March	X	X	X	0	0	0	1	1
April	X	X	X	0	0	1	0	0
May	X	X	X	0	0	1	0	1
June	X	X	X	0	0	1	1	0
July	X	X	X	0	0	1	1	1
August	X	X	X	0	1	0	0	0
September	X	X	X	0	1	0	0	1
October	X	X	X	1	0	0	0	0
November	X	X	X	1	0	0	0	1
December	X	X	X	1	0	0	1	0

¹⁾ The RTC compensates for leap years by adding a 29th day to February if the year counter contains a value which is exactly divisible by 4; including the year 00.


Years (address 0Eh...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Eh	Years	X	40	20	10	8	4	2	1

Bit	Symbol	Value	Description
7	X	1	Unused
6 to 0	Years	0 to 79	These registers hold the current year 20xx coded in BCD format 1)

¹⁾ The RTC compensates for leap years by adding a 29th day to February if the year counter contains a value which is exactly divisible by 4; including the year 00.

3.3.2 DATA FLOW OF TIME AND DATE FUNCTION

3.4 ALARM PAGE REGISTER FUNCTION

The Alarm Page registers contain alarm information. When one or more of these registers are loaded with a valid second, minute, hour, day, weekday, month or year information and its corresponding alarm enable bit (AE_x) is logic "1", then that information will be compared with the current time / date information in the Watch Page registers.

When all enabled comparisons first match (wired "AND") and the AIE Flag (bit 0 in register Control_INT) is enabled, then the AF Flag (bit 0 in register Control_INT) is set = "1" and an Interrupt signal becomes available at INT pin. Disabled Alarm registers which have their corresponding bit AE_X at logic "0" are ignored.

3.4.1. SECONDS, MINUTES, HOURS, DAYS, WEEKDAYS, MONTHS, YEARS ALARM REGISTER Alarm Seconds (address 10h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
10h	Second Alarm	AEN_S	40	20	10	8	4	2	1

Bit	Symbol	Value	Description
7	AE C	0	Second alarm is disabled
/	AE_S	1	Second alarm is enabled
6 to 0	Second alarm	0 to 59	These bits hold the Second Alarm information coded in BCD format

Alarm Minutes (address 11h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
11h	Minute Alarm	AE M	40	20	10	8	4	2	1

Bit	Symbol	Value	Description
7	AE M	0	Minute alarm is disabled
/	7 AE_M	1	Minute alarm is enabled
6 to 0	Minute Alarm	0 to 59	These bits hold the Minute Alarm information coded in BCD format

Alarm Hours (address 12h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
12h	Hours Alarm	AE H	X	20-PM	10	8	4	2	1

Bit	Symbol	Value	Description
7	AE H	0	Hour alarm is disabled
/	AE_H	1	Hour alarm is enabled
6	X	-	unused
12 hour mo	ode		
5	20-PM	0	indicates AM
3	20-PWI	1	indicates PM
4 to 0	Hour Alarm	1 to 12	These registers hold the Hour Alarm information coded in BCD format when in 12 hour mode
24 hour me	ode		
5 to 0	Hour Alarm	0 to 23	These registers hold the Hour Alarm information coded in BCD format when in 24 hour mode

Alarm Days (address 13h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
13h	Day Alarm	AE_D	X	20	10	8	4	2	1

Bit	Symbol	Value	Description
7	7 AE D		Day alarm is disabled
/	7 AE_D	1	Day alarm is enabled
6	X	-	unused
5 to 0	Day Alarm	1 to 31	These registers hold the day alarm information coded in BCD format

Alarm Weekdays (address 14h...bits description)

ı	Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	14h	Weekday Alarm	AE_W	X	X	X	X	4	2	1

Bit	Symbol	Value	Description
7	AE W	0	Weekday alarm is disabled
/	7 AE_W		Weekday alarm is enabled
6 to 3	X	-	unused
2 to 0	Weekday Alarm	1 to 7	These registers hold the Weekday Alarm information coded in BCD format

Alarm Months (address 15h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
15h	Month Alarm	AE_M	X	X	10	8	4	2	1

Bit	Symbol	Value	Description
7	AE M	0	Month alarm is disabled
/	7 AE_M	1	Month alarm is enabled
6 to 5	X	-	unused
4 to 0	Month Alarm	1 to 12	These registers hold the Month Alarm information coded in BCD format

Alarm Years (address 16h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
16h	Year Alarm	AE_Y	40	20	10	8	4	2	1

Bit	Symbol	Value	Description
7	AE Y 0		Year alarm is disabled
/	/ AE_Y	1	Year alarm is enabled
6 to 0	Year Alarm	0 to 79	These registers hold the Year Alarm information coded in BCD format

3.5 TIMER PAGE REGISTER FUNCTION

The Timer Page contains 2 registers forming a 16-bit countdown timer value.

Countdown Timer Value (addresses 18h / 19h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
18h	Timer Low	128	64	32	16	8	4	2	1
19h	Timer High	128	64	32	16	8	4	2	1

Address	Symbol	Value	Description
18h	Timer Low	1 to 255	These bits hold the Low Countdown Timer Value in binary format
19h	Timer High	0 to 255	These bits hold the High Countdown Timer Value in binary format

3.6 TEMPERATURE PAGE REGISTER FUNCTION

The Temperature Page register contains the result of the measured temperature ranging from -60°C (=0d) to +190°C (=250d) with 0° C corresponding to a content of =60d.

During read / write access, the content of the register Temperature is frozen in a cache memory to prevent faulty reading.

When the Thermometer is disabled by ThE = "0" (bit 1 in register EEPROM_Control), the register Temperature at address 20h can be externally written.

Temperature Value (address 20h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
20h	Temperature	128	64	32	16	8	4	2	1

Address	Symbol	Value	Description			
20h	Temperature	-60 to +194°C	These bits hold the Temperature Value in binary format			

3.7 EEPROM DATA PAGE REGISTER FUNCTION

The EEPROM Data Page contains 2 non-volatile EEPROM registers for user's application.

Please see section 4.3 EEPROM MEMORY ACCESS for detailed instructions how to handle EEPROM read / write access.

User EEPROM Data Registers (addresses 28h / 29h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
28h	EEPROM User	128	64	32	16	8	4	2	1
29h	EEPROM User	128	64	32	16	8	4	2	1

Address	Symbol	Value	Description
28h	EEPROM User	0 to 255	EEDDOM Hoor Date (2 Dutes)
29h	EEPROM User	0 to 255	EEPROM User Data (2 Bytes)

3.8 EEPROM CONTROL PAGE REGISTER FUNCTION

The EEPROM Control Page contains 4 non-volatile EEPROM registers.

With Register EEPROM Control, the settings for Trickle-Charger (bit 7-4), the CLKOUT frequency (bit 3&2) and the Thermometer (bit 1&0) can be controlled.

The registers XTAL Offset, XTAL Coef and XTAL T0 contain the factory calibrated, individual crystal parameters to compensate the frequency deviation over the temperature range.

Please see section 4.3 EEPROM MEMORY ACCESS for detailed instructions how to handle EEPROM read / write access.

3.8.1 EEPROM CONTROL (address 30h...bits description)

	Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I	30h	EEPROM Control	R80k	R20k	R5k	R1k	FD1	FD0	ThE	ThP

Bit	Symbol	Value	Description	Reference
7	R80k	0	Disables 80kΩ trickle charge resistor	
/	Kouk	1	Enables 80kΩ trickle charge resistor	
-	D201-	0	Disables 20kΩ trickle charge resistor	
6	R20k	1	Enables 20kΩ trickle charge resistor	See section
5	R5k	0	Disables $5k\Omega$ trickle charge resistor	4.1
3	KJK	1	Enables 5kΩ trickle charge resistor	
4	4 R1k 0		Disables 1.5kΩ trickle charge resistor	
4			Enables 1.5kΩ trickle charge resistor	
3	FD1	00		
	1101	01	Selects Clock Frequency at CLKOUT pin	See section
2	FD0	10	Selection crock rrequency at earth of pin	4.9
		11	Disables The survey of the	
1	ThE	0	Disables Thermometer	
		1	Enables Thermometer	See section
0	0 ThP $\frac{0}{1}$		Set Temperature Scanning Interval: 1 second	5.2.1
U			Set Temperature Scanning Interval: 16 seconds	

3.8.2 XTAL OFFSET (address 31h...bits description)

A	ddress	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	31h	XTAL Offset	sign	64	32	16	8	4	2	1

Bit	Symbol	Value	Description	Reference
7	C:	0	- Deviation (slower) of 32.768kHz frequency at T ₀	
/	7 Sign		+ Deviation (faster) of 32.768kHz frequency at T ₀	See section 5.2.2
6 to 0	XTAL Offset 1)	0 to 121	Frequency Offset Compensation value	

¹⁾ The XTAL Offset register value is factory programmed according to the crystal's initial frequency-tolerance. For best time-accuracy, the content of this register must not be changed by the user.

3.8.3 XTAL TEMPERATUR COEFFICIENT (address 32h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
32h	XTAL Coef	128	64	32	16	8	4	2	1

Bit Symbol Value		Value	Description	Reference	
1	7 to 0	XTAL Coef 1)	0 to 255	Quadratic Coefficient of Xtal's Temperature Drift	See section 5.2.2

¹⁾ The XTAL Coef register value is factory programmed according to the crystal parameters over temperature. For best time-accuracy, the content of this register must not be changed by the user.

3.8.4 XTAL TURNOVER TEMPERATUR COEFFICIENT TO (address 33h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
33h	XTAL T0	X	X	32	16	8	4	2	1

I	Bit	Symbol	Value	Description	Reference
I	7 to 6	X	-	Unused	
Ī	5 to 0	XTAL T0 ⁻¹⁾	4 to 67	Xtal's Turnover Temperature in °C	See section 5.2.2

¹⁾ The XTAL Coef register value is factory programmed according to the crystal parameters over temperature. For best time-accuracy, the content of this register must not be changed by the user.

3.9 RAM DATA PAGE REGISTER FUNCTION

The RAM Data Page contains 8 RAM registers for user's application.

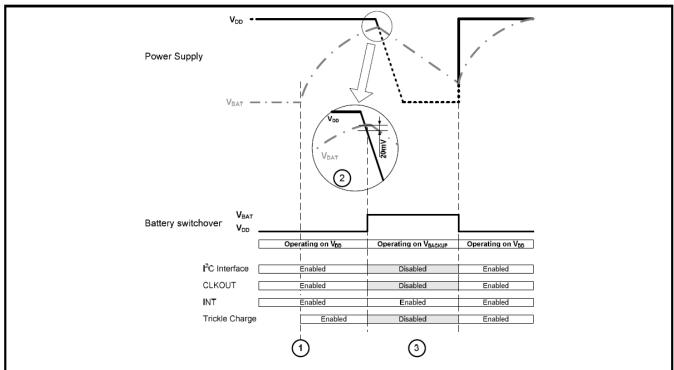
User RAM Data Registers (addresses 38h to 3Fh...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
38h	RAM User	128	64	32	16	8	4	2	1
		128	64	32	16	8	4	2	1
3Fh	RAM User	128	64	32	16	8	4	2	1

Address	Symbol	Value	Description
38h	RAM User	0 to 255	
			RAM User Data (8 Bytes)
3Fh	RAM User	0 to 255	

4.0 DETAILED FUNCTIONAL DESCRIPTION

4.1 POWER-UP, POWER MANAGEMENT AND BATTERY SWITCHOVER


The AB-RTCMC-32.768kHz-EOA9-S3 has two power supply pins:

V_{DD} the main power supply input pin
 V_{BACKUP} the backup battery input pin

The AB-RTCMC-32.768kHz-EOA9-S3 has multiple power management function implemented:

- Automatic switchover function between main power supply and backup supply voltage. The higher supply voltage is selected automatically, with a switchover hysteresis of 20mV
- ullet Low supply voltage detection V_{LOW1} and V_{LOW2} with the possibility to generate an \overline{INT} if the corresponding control bits are enabled
- Functions requiring a minimum supply voltage are automatically disabled if low supply voltage is detected
- Interface and CLKOUT are automatically disabled when the device operates in backup supply mode
- Programmable trickle charge circuitry to charge backup battery or supercap

Backup Switchover Circuitry Disables non-used Functions

- ① Trickle charge circuitry is enabled by software when selecting trickle-charge resistors. When back-up supply switchover-circuitry switches to the backup supply voltage, trickle charge function is disabled.
- ② The implemented backup switchover circuitry continuously compares V_{DD} and V_{BACKUP} voltages and connects the higher of them to the internal supply voltage V_{INT} . The switchover hysteresis from V_{DD} to V_{BACKUP} and vice versa is typically 20mV.
- When the device is operating at the V_{BACKUP} supply voltage, non-used RTC functions are disabled to ensure optimized power consumption:

 $\begin{array}{ll} \bullet \; SPI \; interface \\ \bullet \; CLKOUT \\ \bullet \; \overline{INT} \\ \bullet \; Trickle \; Charge \\ \end{array} \begin{array}{ll} Disabled \; when \; operating \; in \; V_{BACKUP} \; mode \\ Disabled \; even \; when \; operating \; in \; V_{BACKUP} \; mode \\ Disabled \; when \; operating \; in \; V_{BACKUP} \; mode \\ \end{array}$

4.1.1 POWER UP SEQUENCE

The device can be either powered up from main supply V_{DD} or from backup supply V_{BACKUP} .

During power-up, the chip is executing the following power-up procedure:

- The implemented battery switchover circuitry compares V_{DD} and V_{BACKUP} voltages and connects the higher of them to supply the chip
- At power-up, the chip is kept in Reset state until the supply voltage reaches an internal threshold level. Once the supply voltage is higher than this threshold level, a Reset is executed and registers are loaded with the Register Reset Values described in section 4.2.2. REGISTER RESET VALUES
- After the Reset is executed and registers are loaded with the Register Reset Values, "PON" is set = "1" (bit 5 in Register Control-Status), it needs to be cleared by writing = "0"
- Once the supply voltage reaches the oscillator start-up voltage, the oscillator-circuitry starts the 32.768 kHz "tuning-fork" Crystal typically within 500 ms
- Once the 32.768 kHz clocks are present, the Voltage Detector starts in fast mode to monitor the supply voltage, the accelerated scanning of the supply voltage will slightly increase the current consumption.
- \bullet When a supply voltage > V_{Low2} is detected, the fast mode voltage detection is stopped, and the EEPROM read is enabled
- Configuration registers are loaded with the configuration data read from the EEPROM Control Page and the bits V_{Low1} and V_{Low2} are reset = "0"
- If the Thermometer is enabled by "ThE" = "1" (bit 1 in register EEPROM_Control), the temperature is measured and the frequency compensation value for time correction is calculated
- The AB-RTCMC-32.768kHz-EOA9-S3 becomes fully functional; the correct Time / Date information needs to be loaded into the corresponding registers and bit 5 "PON" in Register Control-Status needs to be cleared by writing "0"

Note 1:

During power up, the Low Voltage Detection is monitoring the supply voltage at an accelerated scan rate increasing the current consumption of the device.

Once power supply voltage exceed V_{LOW2} threshold, the flags V_{LOW1} and V_{LOW2} are cleared and the scan rate for the low voltage detection is set to 1 second to ensure optimized power consumption.

Note 2:

Please not the different meaning of the "PON"; " V_{Low1} " and " V_{Low2} " Flags:

PON

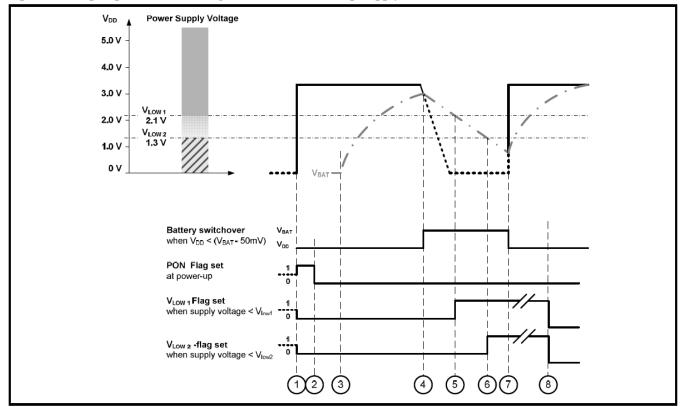
"PON" Flag is set after Power-Up Reset is executed

• Indicating that time & date information are corrupted

V_{Low1}

 V_{Low1} Flag is set when supply voltage drops below V_{Low1} threshold

• Indicating that the Thermometer might have been disabled due to low supply voltage and the temperature compensation was operating for a while with the last temperature reading causing bigger time-deviation


V_{Low}

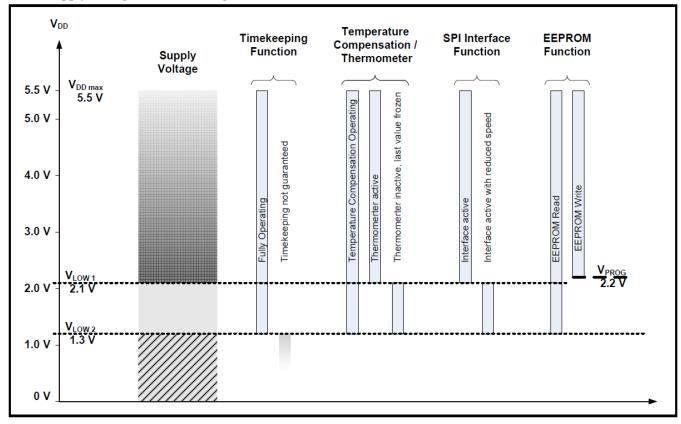
 V_{Low2} Flag is set when supply voltage drops below V_{Low2} threshold

• Indicating a risk that the 32.768 kHz might have stopped due to low supply voltage and that the time & date information might be corrupted

Example Power Up sequence, Low Voltage detection and Backup Supply switchover

- ① Power Up Reset is executed; registers are loaded with Reset Values. PON flag is set at Power up indicating that time / date information likely are corrupted. Low voltage detection flags V_{LOW1} and V_{LOW2} are automatically cleared.
- 2) PON Flag needs to be cleared by software writing "0".
- (3) Trickle charge circuitry for backup battery can be enabled by software.
- 4 Switchover to the backup supply voltage when V_{DD} drops below $V_{DD} < (V_{BAT} 20 \text{mV})$.
- (5) Low voltage detection sets V_{LOW1} Flag when supply voltage drops V_{LOW1} threshold.
- 6 Low voltage detection sets V_{LOW2} Flag when supply voltage drops V_{LOW2} threshold.
- \bigcirc Switchback from backup supply voltage to main supply voltage when V_{DD} rise above $V_{DD} > (V_{BAT} + 20 \text{mV})$.
- (8) V_{LOW1} and V_{LOW2} Flags need to be cleared by software writing "0".

4.1.2 SUPPLY VOLTAGE OPERATING RANGE AND LOW VOLTAGE DETECTION


The AB-RTCMC-32.768kHz-EOA9-S3 has built-in low supply voltage detection which periodically monitors supply voltage levels vs. V_{LOW1} and V_{LOW2} thresholds.

If low supply voltage is detected, the corresponding flags V_{LOW1} and V_{LOW2} are set = "1". Device functions critical to low supply voltage are disabled.

During power up, the Low Voltage Detection is monitoring the supply voltage at an accelerated scan rate. If power supply voltage exceed $V_{\rm LOW2}$ threshold, the flags $V_{\rm LOW1}$ and $V_{\rm LOW2}$ are cleared and the scan rate for the low voltage detection is set to 1 second.

Minimum Supply Voltage and Low Voltage Detection

At first power-up, the supply voltage has to exceed V_{LOW1} threshold to enable and correctly setup all function of the device.

Timekeeping Function:

Keeping track of Time & Date depends on the $32.768 \mathrm{kHz}$ oscillator operates safely over the specified temperature range. Timekeeping function is guaranteed for a supply voltage down to V_{LOW2} threshold, below this voltage the $32.768 \mathrm{kHz}$ oscillator may stop and the time & date information might be corrupted.

Temperature Compensation:

The Frequency Compensation Unit "FCU" operates with supply voltages down to V_{LOW2} threshold. The Thermometer requires a supply voltage of $\geq V_{LOW1}$ threshold. Supply voltages below V_{LOW1} threshold will automatically disable the Thermometer; the last correct temperature reading is frozen in the register "Temperature". The Frequency Compensation Unit continues to operate with the last temperature-reading down to a supply voltage $\geq V_{LOW1}$ threshold.

SPI interface:

The SPI interface operates with max. SCL clock rate down to a supply voltage of $\geq V_{LOW1}$ threshold. Between V_{LOW1} and V_{LOW2} threshold, the interface still operates at reduced SCL clock rate.

EEPROM read / write access:

EEPROM read access is possible down to a supply voltage of \geq V_{LOW2} threshold. EEPROM write cycle requires a minimum supply voltage of \geq V_{PROG} of 2.2V.

4.2 RESET

A Reset can be initiated by 3 different ways:

- Power On Reset (automatically initiated at power-up)
- Software Reset (can be initiated by software)
- Self-Recovery System Reset (automatically initiated if enabled by Software and possible deadlock is detected)

4.2.1 POWER-UP RESET, SYSTEM RESET AND SELF-RECOVERY RESET

Power On Reset:

A Reset is automatically generated at Power On. After Power On Reset has been executed, bit 5 "PON" in Register Control_Status is set = "1", it needs to be cleared by writing = "0".

System Reset:

A Software Reset can be initiated when the System-Reset command "SysR" is set ="1" (bit 4 in Register Control_Reset). If a System-Reset is executed, the "SR" Flag (bit 4 in Register Control Status) is set = "1", needs to be cleared by writing = "0".

It is generally recommended to make a System Reset by Software after power-up.

Note:

Please consider the Register Reset Values shown in section 4.2.2. After a Reset has been executed, Self-Recovery System "SROn" (bit 4 in Register Control 1) is set = "1" and Self-Recovery INT Enable "SRIE" (bit 4 in Register Control INT) is set = "0".

Self-Recovery System Reset:

A Self-Recovery System Reset will be automatically initiated when the Self-Recovery function is enabled by bit 4 "SROn" in Register Control_1 is set "1" and internally a possible deadlock-state is detected. If a Self-Recovery System Reset is executed, the bit 4 "SR" in Register Control_Status is set "1" and need to be cleared by writing "0". After a Self-Recovery System Reset is executed and Register Reset Values were written, bit 4 "SRF" in Register Control_INT Flag is set "1" and needs to be cleared by writing "0".

In case of a Self Recovery System Reset is executed, an Interrupt is available if Self-Recovery-INT function is Enabled by bit 4 "SRIE" in Register Control INT is set "1".

The purpose of the Self Recovery function is to generate an internal System Reset in case the on-chip state machine goes into a deadlock. The function is based on an internal counter that is periodically reset by the control logic. If the counter is not reset on time, a possible deadlock is detected and a System Reset will be triggered. The System Reset is executed latest after 2 temperature- or voltage-monitoring periods defined in Thermometer Period bit 0 "ThP" in Register EEPROM Control, i.e. latest after 2 or 32 seconds.

Note:

Please consider the Register Reset Values shown in section 4.2.2. After a Reset has been executed, Self-Recovery System bit 4 "SROn" in Register Control 1 = "1" and Self-Recovery INT Enable "SRIE" in Register Control INT = "0".

4.2.2 REGISTER RESET VALUES

Addr	ess										
Page	Address		Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7 - 3	Bit 2 - 0	Hex			U	3	4	3	2	1	U
	000	00h	Control 1	1	0	0	1	1	0	0	1
	001	01h	Control INT	_	_	_	0	0	0	0	0
Control page	010	02h	Control INT Flag	_	-	-	0 1)	0	0	0	0
00000	011	03h	Control 1	EEbusy	X	0 2)	0 3)	X	X	X	X
	100	04h	Control 1	-	-	-	0	-	-	-	-
	000	0.01	G 1		3.7	37	37	37	37	37	3.7
	000	08h	Seconds	-	X	X	X	X	X	X	X
	001	09h	Minutes	-	X	X	X X	X	X	X	X
Clock page	010	0Ah	Hours	-	A	X	X	X	X	X	X
00001	100	0Bh 0Ch	Days Weekdays	-	-	-	-	- A	X	X	X
	100	0Dh	Months	-	-	-	X	X	X	X	X
	110	0Eh	Years		X	X	X	X	X	X	X
	110	OLH	1 ears	-	Λ	Λ	Λ	Λ	Λ	Λ	Λ
	000	10h	Second Alarm	AE_S	X	X	X	X	X	X	X
	001	11h	Minute Alarm	AE_M	X	X	X	X	X	X	X
A 10 mm . m 0 0 0	010	12h	Hour Alarm	AE_H	X	X	X	X	X	X	X
Alarm page 00010	011	13h	Day Alarm	AE_D	-	X	X	X	X	X	X
00010	100	14h	Weekday Alarm	AE_W	-	-	-	•	X	X	X
	101	15h	Month Alarm	AE_M	-	-	X	X	X	X	X
	110	16h	Year Alarm	AE_Y	X	X	X	X	X	X	X
Timer page	000	18h	Timer Low	X	X	X	X	X	X	X	X
00011	001	19h	Timer High	X	X	X	X	X	X	X	X
Temperature page 00100	000	20h	Temperature	X	X	X	X	X	X	X	X
EEPROM User	000	28h	EEPROM User								
00101	001	29h	EEPROM User		2 by	tes of E	EPRON	A for us	ser data		
	000	201-	EEDDOM Control	0 4)	0 4)	0 4)	0 4)	0 4)	0 4)	1 4)	0 4)
EEPROM Control	000	30h 31h	EEPROM Control								U ′
page		31h	Xtal Offset Xtal Coef.				Xtal from Xtal tem				
00110	010	32h	Xtal Coel. Xtal T0	- Fa	ciory se		tory set	_			ture
	011	2211	71tal 10			rac	tory set	ung. A	iai IV l	спрста	iuic
RAM page	000	38h									
00111	:	:	User RAM	8 bytes of RAM for user data							
	111	3Fh									

<sup>bits labeled as – are not implemented.
X bits labeled as X are undefined at power-up and unchanged by subsequent resets.
1) SRF flag (bit 4 in register Control_INT Flag) will be set = "1" after a Self Recovery System Reset was executed.
2) PON flag (bit 5 in register Control_Status) will be set = "1" after a Power On Reset was executed.</sup>

³⁾ SR flag (bit 4 in register Control_Status) will be set = "1" after a System or Self recovery Reset was executed.
4) EEPROM Control default data are set by factory; data might be reprogrammed by customer and will remain unchanged during power down or any Reset executed.

After Reset, the following mode is entered:

- CLKOUT is selected at CLKOUT pin, default frequency is 32.768 kHz defined in register EEPROM Control
- Timer and Timer Auto-Reload mode are disabled; Timer Source Clock frequency is set to 32Hz
- Self Recovery function is enabled
- Automatic EEPROM Refresh every hour is enabled
- 24 hour mode is selected, no Alarm is set
- All Interrupts are disabled
- At Power-On Reset, "PON" Flag is set = "1" and has to be cleared by writing = "0"
- At Self-Recovery Reset or System Reset, "SR" Flag is set = "1" and has to be cleared by writing = "0".

4.3 EEPROM MEMORY ACCESS

The EEPROM Memory has a built-in automatic EEPROM Refresh function, controlled by "EERE" (bit 3 in register Control_1). If enabled, this function automatically refreshes the content of the EEPROM Memory Pages once an hour.

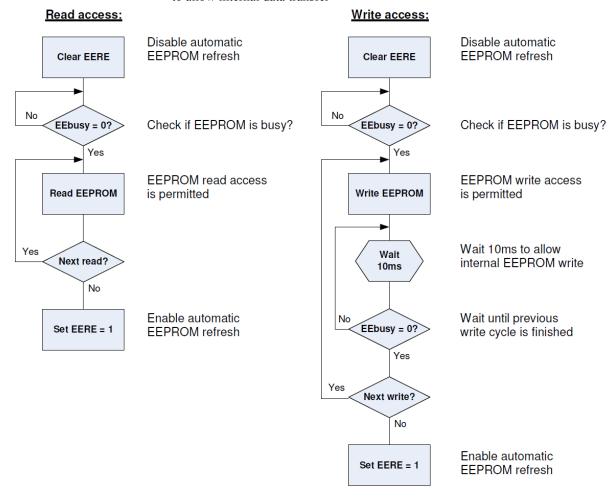
The "EEbusy" will be set = "1" (bit 7 in register Control_Status) if the EEPROM Memory Pages are busy due to write or automatic refresh cycle is in progress. "EEbusy" goes = "0" when writing is finished, EEPROM Memory Pages shall only be accessed when not busy, i.e. when "EEbusy" = "0".

A special EEPROM access procedure is required preventing access collision between the internal automatic EEPROM refresh cycle and external read / write access through interface.

• Set "EERE" = "0"

Automatic EEPROM Refresh needs to be disabled before EEPROM access.

• Check for "EEbusy" = "0"


Access EEPROM only if not busy

• Set "EERE" = "1"

It is recommended to enable Automatic EEPROM Refresh at the end of read / write access

Write EEPROM

Allow 10ms wait-time after each written EEPROM register before checking for EEbusy = "0" to allow internal data transfer

Note:

A minimum power supply voltage of VPROG = 2.2V is required during the whole EEPROM write procedure; i.e. until "EEbusy" = "0".

4.4 TIMER FUNCTION

The AB-RTCMC-32.768kHz-EOA9-S3 offers different Alarm and Timer functions which allow simply generating highly versatile timing-functions.

The Countdown Timer is controlled by the register Control_1. Bit 1 "TE" enables the Timer function; bits 5 & 6 "TD0" and "TD1" determine one of 4 Timer Source Clock frequencies (32 Hz, 8 Hz, 1 Hz, or 0.5Hz).

The Timer counts down from a software-loaded 16-bit binary value "n", "Timer Low" (bit 0-7 at address 18h) and "Timer High" (bit 0-7 at address 19h). Values "n" from 1 to 65536 are valid; loading the counter with "n" = "0" effectively stops the timer. The end of every Timer countdown is achieved when the Timer Counter value "n" reaches = "0".

Countdown Timer can be set in Automatic Reload mode by "TAR" = "1" (bit 2 of register Control_1), the counter automatically reloads Timer countdown value "n" and starts the next Timer period. Automatic reload of the countdown value "n" requires 1 additional timer source clock. This additional timer source clock has no effect on the first Timer period, but it has to be taken into account since it results in a Timer duration of "n+1" for subsequent timer periods.

The generation of Interrupts from the Countdown Timer function is enabled by "TIE" = "1" (bit 1 in register Control_INT). If Timer Interrupt is enabled by "TIE" = "1", the Timer Flag "TF" (bit 1 in register Control_INT Flag) will be set = "1" at the end of every Timer countdown. The Interrupt signal $\overline{\text{INT}}$ follows the condition of Timer Flag "TF" (bit 1 in register Control_INT Flag), the $\overline{\text{INT}}$ signal can be cleared by clearing the "TF" = "0".

Control of the Countdown Timer Functions (address 00h...bits description)

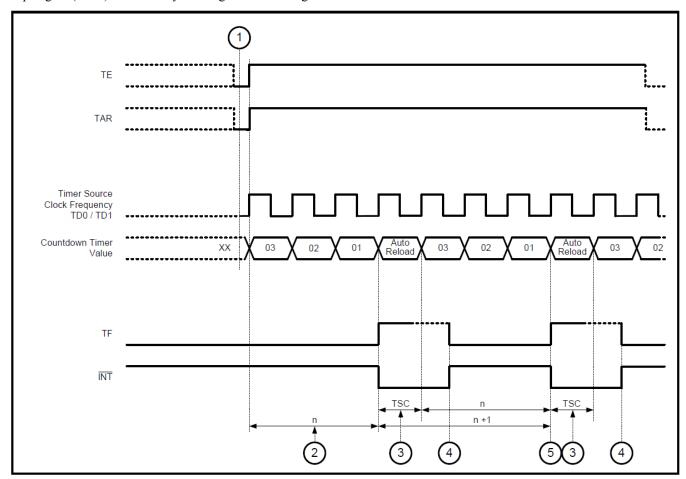
Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	Control_1	Clk/Int	TD1	TD0	SROn	EERE	TAR	TE	WE

Bit	Symbol	Value	Description
6	TD1	00	Timer Source Clock Frequency: 32Hz
6	1D1	01	Timer Source Clock Frequency: 8Hz
5	5 TD0		Timer Source Clock Frequency: 1Hz
3	1D0	11	Timer Source Clock Frequency: 0.5Hz
2	TAR	0	Disables Countdown Timer Auto-Reload mode
2	IAK	1	Enables Countdown Timer Auto-Reload mode
1	1 TE 0		Disables Countdown Timer
1	TE	1	Enables Countdown Timer

The Timer Source Clock Frequency "TD0" & "TD1" and the Timer Auto Reload mode "TAR" can only be written when the Timer is stopped by "TE" = "0" (bit 1 in register Control_1).

The Countdown Timer values in "Timer Low" and "Timer High" can only be written when the Timer is stopped by "TE" = "0" and Timer Auto Reload mode is disabled "TAR" = "0".

Register Countdown Timer (addresses 18h / 19h...bits description)


Register 18h is loaded with the low byte of the 16-bit Countdown Timer value "n" Register 19h is loaded with the high byte of the 16-bit Countdown Timer value "n"

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
18h	Timer Low	128	64	32	16	8	4	2	1
19h	Timer High	128	64	32	16	8	4	2	1

Address	Symbol	Value	Description
18h	Timer Low	xx01 to xxFF	Countdown value = n
19h	Timer High	00xx to FFxx	$Countdown period = \frac{R}{Source ClockFrequency}$

Example Countdown Timer function with Timer in Auto Reload mode

In this example, the Countdown Timer is set to Automatic Reload Mode, the Countdown Timer value is set = "3". Automatic reload of the countdown value ,n' requires 1 additional Timer Source Clock. This additional timer source clock has no effect on the first Timer period but it has to be taken into account since it results in a Timer duration of ,n+1' for subsequent timer periods. The Interrupt signal (INT) is cleared by clearing the Timer Flag "TF" = "0".

- ① Timer Source Clock Frequency TD0 / TD1 can only be modified when Timer is disabled "TE" = "0". Countdown Timer value "n" in "Timer Low" and "Timer High" only can be modified when Timer "TE" = "0" and Timer Auto Reload "TAR" = "0" are both disabled.
- ② Duration of first Timer Period = $\frac{n}{\text{Source ClockFrequency}}$

The additional timer source clock for automatic reload of the countdown Timer value "n" has no effect on the first Timer Period.

- (3) Timer Automatic Reload mode "TAR" requires one Timer Source Clock period for automatic reload of the Countdown Timer value "n".
- 4 To reset Interrupt signal ($\overline{\text{INT}}$), Timer Flag "TF" has to be cleared by writing = "0".
- (5) When Countdown Timer is in automatic reload mode, one additional timer source clock has to be taken into account since it results in a Timer duration of "n+1" for subsequent timer periods.

4.4.1 TIMER INTERRUT

The generation of Interrupts from the Countdown Timer function is enabled by "TIE" = "1" (bit 1 in register Control_INT). If Timer Interrupt is enabled by "TIE" = "1", the Timer Flag "TF" (bit 1 in register Control_INT Flag) will be set = "1" at the end of every Timer countdown.

The Interrupt signal $\overline{\text{INT}}$ follows the condition of Timer Flag "TF" (bit 1 in register Control_INT Flag), the Timer Flag "TF" and the Interrupt signal ($\overline{\text{INT}}$) remain set until cleared by software writing "TF" = "0".

Timer Interrupt Control (addresses 01h / 02h...bits description)

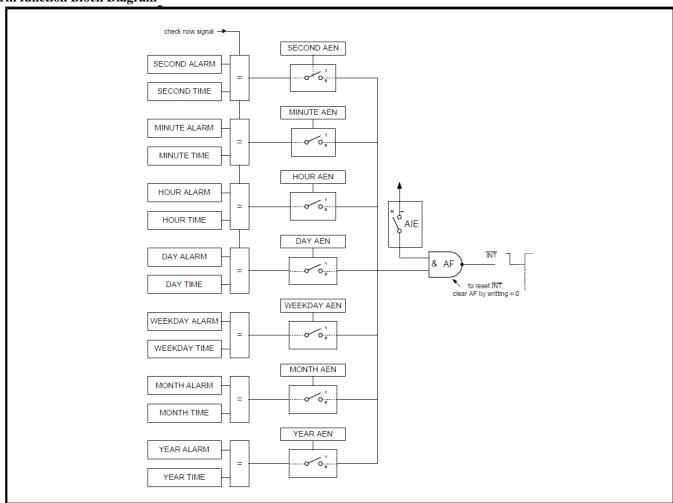
Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h	Control_INT	X	X	X	SRIE	V2IE	V1IE	TIE	AIE

Bit	Symbol	Value	Description
		0	TF is disabled, no Timer Interrupt generated
Bit 1	TIE	1	TF is enabled, Timer Interrupt generated when Countdown Timer value reaches zero and TF is set "1"

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
02h	Control_INT Flag	X	X	X	SRF	V2IF	V1IF	TF	AF

Bit	Symbol	Value	Description		
Bit 1 TF	0	No Timer Interrupt generated			
	TF	1	Timer Flag is set "1" when TIE is enabled and Countdown Timer value		
			reaches zero, TF needs to be cleared to clear INT		

Bit positions labeled as "X" are not implemented and will return a "0" when read.



4.5 ALARM FUNCTION

Every Alarm Register in Alarm Page can be individually enabled by setting bit 7 (AE_x) = "1". Disabled alarm registers which have their bit "AE x" at logic = "0" are ignored.

When one or more of these registers are loaded with a valid second, minute, hour, day, weekday, month or year information and its corresponding alarm enable bit (AE_x) is logic = "1", then that information will be compared with the current time / date information in Watch Page registers.

Alarm function Block Diagram

4.5.1 ALARM INTERRUPT

The generation of Interrupts from the Alarm function is enabled by "AIE" = "1" (bit 0 in register Control INT).

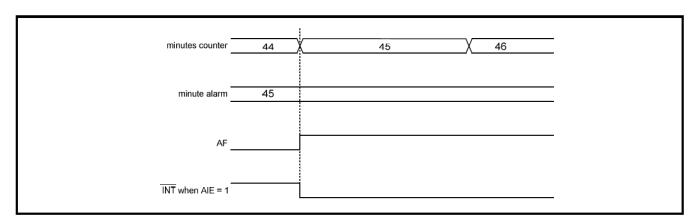
When all enabled Alarm comparisons first match (wired "AND") and the Alarm Interrupt is enabled by, the Alarm Flag "AF" (bit 0 in Register Control_INT Flag) is set to logic = "1". The Interrupt signal ($\overline{\text{INT}}$) follows the condition of "AF".

The Interrupt signal $\overline{\text{INT}}$ follows the condition of Alarm Flag "AF" (bit 0 in register Control_INT Flag), The Alarm Flag "AF" and the Interrupt signal ($\overline{\text{INT}}$) remain set until cleared by software writing "AF" = "0".

Once bit "AF" has been cleared, it will only be set again when the time increments and matches the alarm condition once more.

Alarm Interrupt Control (addresses 01h / 02h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h	h Control_INT		X	X	SRIE	V2IE	V1IE	TIE	AIE
Bit	Symbol	Value	Description						
	AIE	0	AF is disabled, no Alarm Interrupt generated						
0		1	AF is enabled, AF is set "1" and Alarm Interrupt generated when all enabled Alarm comparisons first match.						
Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
02h	Control_INT Flag	X	X	X	SRF	V2IF	V1IF	TF	AF


Bit	Symbol	Value	Description
		0	No Alarm Interrupt generated
0	AF	1	Alarm Flag is set "1" when all enabled Alarm comparisons first match, need to be cleared to clear INT

Bit positions labeled as "X" are not implemented and will return a "0" when read.

Example for Alarm Flag and Alarm INT

Example where "Minute Alarm" is enabled and set to 45 and no other Alarm is enabled.

If bit AIE is enabled, the INT pin follows the condition of bit 0 "AF" in register Control_INT Flag at address 02h.

4.6 INTERRUPT OUTPUT INT

An active LOW Interrupt signal is available at $\overline{\text{INT}}$ pin.

The \overline{INT} is an open-drain output and requires a pull-up resistor to V_{DD} .

Interrupts may be sourced from five places:

- Alarm function
- Countdown Timer function
- VLOW1 detection
- VLOW2 detection
- System Reset function

All Interrupt signals follow the condition of their corresponding flags in the bits 0 to 4 of register Control INT Flag at address 02h.

Alarm Interrupt:

Generation of Interrupts from the Alarm function is enabled via "AIE" = "1" (bit 0 in register Control_INT). If "AIE" is enabled, the \overline{INT} pin follows the condition of Flag "AF" (bit 0 in register Control_INT Flag). To clear Interrupt signal (\overline{INT}), the corresponding flag "AF" needs to be cleared by writing = "0", clearing "AF" will immediately clear \overline{INT} .

Timer Interrupt:

Generation of Interrupts from the Countdown Timer is enabled via "TIE" = "1" (bit 1 in register Control_INT). If "TIE" is enabled, the $\overline{\text{INT}}$ pin follows the condition of Flag "TF" (bit 1 in register Control_INT Flag). To clear Interrupt signal ($\overline{\text{INT}}$), the corresponding flag "TF" needs to be cleared by writing = "0", clearing "TF" will immediately clear $\overline{\text{INT}}$.

V_{LOW1} Interrupt:

Generation of Interrupts from the Voltage Low 1 detection is enabled via "V1IE" = "1" (bit 2 in register Control_INT). If "V1IE" is enabled, the INT pin follows the condition of Flag "V1IF" (bit 2 in register Control_INT Flag). To clear Interrupt signal (INT), both corresponding flags "V1IF" (bit 2 in register Control_INT Flag) and "V1F" (bit 2 in register Control_Status) need to be cleared by writing = "0".

V_{LOW2} Interrupt:

Generation of Interrupts from the Voltage Low 2 detection is enabled via "V2IE" = "1" (bit 3 in register Control_INT). If "V2IE" is enabled, the INT pin follows the condition of Flag "V2IF" (bit 3 in register Control_INT Flag). To clear Interrupt signal (INT), both corresponding flags "V2IF" (bit 3 in register Control_INT Flag) and "V2F" (bit 3 in register Control_Status) need to be cleared by writing = "0".

System Reset Interrupt:

Generation of Interrupts from the System Reset function is enabled via "SRIE" = "1" (bit 4 in register Control_INT). If "SRIE" is enabled, the $\overline{\text{INT}}$ pin follows the condition of Flag "SRF" (bit 4 in register Control_INT Flag). To clear Interrupt signal ($\overline{\text{INT}}$), both corresponding flags "SRF" (bit 4 in register Control_INT Flag) and "SR" (bit 4 in register Control_Status) need to be cleared by writing = "0".

4.7 WATCH ENABLE FUNCTION

The function Watch Enable function "WE" (bit 0 in register Control_1) enables / disables the 1 Hz clock for the watch function. After power-up reset, the bit "WE" is automatically set = "1" and the 1 Hz clock is enabled. Setting "WE" = "0" stops the watch-function and the time circuits can be set and will not increment until the stop is released. Setting "WE" = "1" allows for accurate start of the time circuits triggered by an external event.

"WE" will not affect the clock outputs at CLKOUT.

4.8 SELF-RECOVERY SYSTEM

The purpose of the Self-Recovery System is to automatically generate an internal Reset in case the on-chip state machine goes into a deadlock. A possible source for such a deadlock could be disturbed electrical environment like EMC problem, disturbed power supply or any kind of communication issues on the SPI interface.

The function of the Self-Recovery System is based on internal counter that is periodically reset by the Control Logic. If the counter is not reset in time, a Self-Recovery Reset will be executed, at the latest after 2 thermometer scanning interval periods, i.e. 2 or 32 seconds.

The Self-Recovery System is enabled / disabled by "SROn" (bit 4 in register Control_1), it is automatically enabled "SROn" = "1" after power-up by the register reset values, see section 4.2.2. REGISTER RESET VALUES. Thermometer scanning interval is defined with "ThP" (bit 0 in register EEPROM_Control).

Generation of Interrupts from the System Reset function is enabled via "SRIE" = "1" (bit 4 in register Control_INT). If "SRIE" is enabled, the INT follows the condition of Flag "SRF" (bit 4 in register Control_INT Flag). To clear Interrupt signal (INT), both corresponding flags "SRF" (bit 4 in register Control_INT Flag) and "SR" (bit 4 in register Control_Status) need to be cleared by writing = "0".

During Self-Recovery or System Reset, the internal logic is reset and registers are loaded with the Register Reset Values shown in section 4.2.2., Watch / Alarm and Timer information are not affected.

After Self-Recovery Reset, "SRF" is set = "1" (bit 4 in Register Control_INT Flag), indicating that an automatic Self-Recovery System Reset has been executed.

4.9 CLOCK OUTPUT CLKOUT

The internal reference frequency is generated by the oscillator-circuitry operating a 32.768 kHz "Tuning-Fork" Quartz Crystal.

A programmable square wave is available at CLKOUT pin. Frequencies of 32.768 kHz, 1024 Hz, 32 Hz or 1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge pump or for test purposes.

The duty cycle of the selected clock is not controlled. However, due to the nature of the clock generation, all frequencies will be 50:50 except the 32.768 kHz.

The frequency 32.768 kHz is clocked directly from the oscillator-circuitry, as a consequence of that, this frequency does not contain frequency compensation clock pulses. The frequencies 1024 / 32 / 1 Hz are clocked from the prescaler and contain frequency compensation clock pulses.

Operation is controlled by the bits "FD1" / "FD0" (bit 2 & 3 in the register EEPROM Control). If "Clk/Int" is = "1" (bit 7 in register Control_1), CLKOUT pin becomes a push-pull CLKOUT output and can be enabled / disabled with the CLKOE pin. When disabled with CLKOE pin = "low", the CLKOUT output is pulled low.

Register EEPROM Control FD0 / FD1 CLKOUT Frequency Selection (address 30Eh...bits description)

Address		Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	30h	EEPROM Control	R80k	R20k	R5k	R1k	FD1	FD0	ThE	1

Bit	3 2		CLKOUT Frequency	Typ. Duty Cycle	Remarks		
DIL	FD1	FD0	[Hz]	% ¹⁾	Kemai Ks		
	0	0	32768	40:60 to 60:40	Directly from 32.768kHz oscillator circuitry, without freq. compensation		
3 to 2	0	1	1024	50:50	With frequency compensation		
	1	0	32	50:50	With frequency compensation		
	1	1	1	50:50	With frequency compensation		

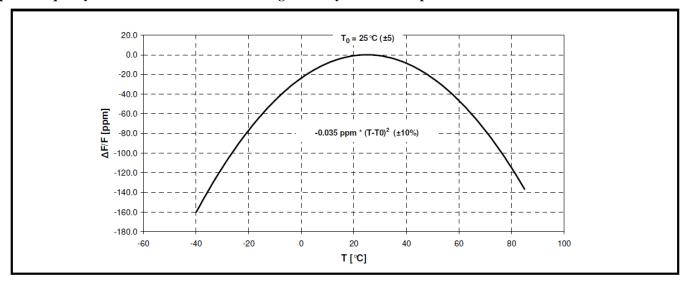
¹⁾ Duty cycle definition: % HIGH-level time : % LOW-level time

5.0 COMPENSATION OF FREQUENCY DEVIATION AND FREQUENCY DRIFT vs TEMPERATURE

There is a Thermometer and a Frequency Compensation Unit "FCU" built-in the AB-RTCMC-32.768kHz-EOA9-S3.

Based on all known tolerances and the measured ambient temperature, this Frequency Compensation Unit "FCU" is calculating every 32 seconds a Frequency Compensation Value. The frequency compensation itself is achieved by adding or subtracting clock-pulses to the 32.768 kHz reference clock, one compensation period takes 32 seconds.

All required parameters for frequency compensation are factory calibrated and should not be modified to profit from best time accuracy.


Frequency deviations affecting the time accuracy of Real Time Clocks:

XTAL offset: Xtal's frequency deviation ± 20 ppm @ 25°C XTAL T₀: Xtal's turnover temperature 25°C ± 5 °C

XTAL temp. coefficient: Xtal's frequency drift vs temperature -0.035 ppm * $(T-T_0)^2 \pm 10\%$

5.1 TEMPERATURE CHARACTERISTICS TUNING FORK CRYSTAL

Typical Frequency Deviation of a 32.768 kHz Tuning Fork Crystal over Temperature

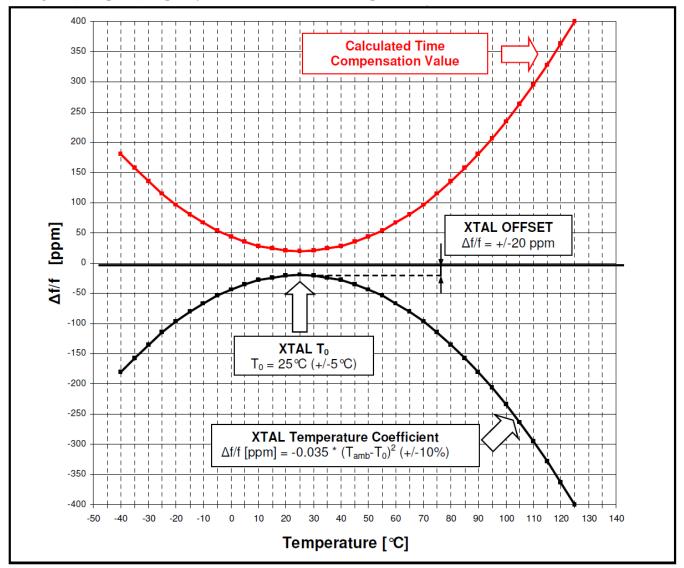
Above graph shows the typical frequency-deviation of a 32.768kHz "Tuning-Fork" Crystal over temperature. The parabolic curve is specified in terms of turnover temperature " T_0 " and the quadratic thermal coefficient " β ".

 T_0 : turnover temperature 25°C ±5°C

B: 2^{nd} order temperature coefficient -0.035 ppm * $(T-T_0)^2 \pm 10\%$ (quadratic thermal coefficient)

5.2 COMPENSATION PRINCIPLE

The Frequency Compensation Unit "FCU" is calculating every 32 seconds a Frequency Compensation Value based on individual device data:


• XTAL offset: Device individual frequency deviation ±20ppm @ 25°C

• XTAL T_0 : Xtal's turnover temperature 25°C \pm 5°C

• XTAL temp. coefficient: Xtal's frequency drift vs. temperature -0.035 ppm * $(T-T_0)^2 \pm 10\%$

• Temperature: Measured ambient temperature

Calculating the Anticipated Frequency Deviation and the Time Compensation Value

Note:

The 32.768 kHz frequency is adjusted according to the calculated Time Compensation value.

The compensation itself is achieved by adding or subtracting clock-pulses to the 32.768 kHz reference clock. One complete compensation period takes 32 seconds.

5.2.1 THERMOMETER AND TEMPERATURE VALUE

The function of the Thermometer is controlled by "ThP" and "ThE" (bit 0 & bit 1 in the register EEPROM Control).

Register EEPROM Control Thermometer Control (address 30h...bits description)

ĺ	Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I	30h	EEPROM Control	R80k	R20k	R5k	R1k	FD1	FD0	ThE	ThP

Bit	Symbol	Value	Description
0	ThE	0	Disable Thermometer
U	THE	1	Enable Thermometer
1	ThP	0	Thermometer scanning interval: 1 second
1		1	Thermometer scanning interval: 16 seconds

The measured temperature value is stored in the register "Temperature" at address 20h.

The measured temperature is binary coded ranging from -60° C (=0d) to $+190^{\circ}$ C (=250d).

Example: Temperature of 0° C corresponding to a content of = 60d.

The thermometer has a resolution of 1°C per LSB; the typical accuracy is ± -4 °C within the temperature range ± 40 °C to ± 125 °C. The Thermometer is automatically disabled if status bit "Vlow1" is set = "1", the result of the last temperature measurement is frozen in register "Temperature" and the frequency compensation continues working with this last temperature reading.

The actual temperature value can be read from register "Temperature" at address 20h. The Thermometer has to be disabled by ThE = "0" to externally write a temperature value into the register "Temperature" at address 20h.

Temperature Value (address 20h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
201-	20h Tammaratura	128	64	32	16	8	4	2	1
20h	Temperature		These bits	s hold the	Femperatur	e Value co	ded in bina	ry format	

Temperature	Value Hex	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-60°C	00h	0	0	0	0	0	0	0	0
-59°C	01h	0	0	0	0	0	0	0	1
:	:					:			
0°C	3Ch	0	0	1	1	1	1	0	0
:	:					•			
194°C	FEh	1	1	1	1	1	1	1	0
195°C	FFh	1	1	1	1	1	1	1	1

5.2.2 SETTING THE FREQUENCY COMPENSATION PARAMETERS

In order to achieve best time accuracy, correct parameters have to be stored into the corresponding registers of the EEPROM Control page.

Attention: these parameters are factory calibrated, it is recommended not to modify these register values.

XTAL Offset (address 31h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
31h	XTAL Offset	sign	64	32	16	8	4	2	1

Bit Symbol		Value	Description
7	Cian	0	- Deviation (slower) of 32.768kHz frequency at T ₀
/	Sign	1	+ Deviation (faster) of 32.768kHz frequency at T ₀
6 to 0	XTAL Offset	0 to 121	Frequency Offset Compensation value

The register value "XTAL Offset" is used by the Frequency Compensation Unit "FCU" to compensate the initial frequency deviation of the 32.768 kHz clock at the crystal's turnover temperature "XTAL T_0 ".

The required register value "XTAL Offset" is calculated as follow:

 $XTAL Offset = Xtal_{OFFSET} \times 1.05$

XTAL COEF Temperature Coefficient (address 32h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
32h	XTAL Coef	128	64	32	16	8	4	2	1

Bit	Symbol	Value	Description
7 to 0	XTAL Coef 1)	0 to 255	Quadratic Coefficient of Xtal's Temperature Drift

¹⁾ The factory programmed register value XTAL Coef may also contain thermometer error compensation.

The register value "XTAL Coef" is used by the Frequency Compensation Unit "FCU" to compensate the frequency deviation caused by 2nd order temperature coefficient of the 32.768 kHz crystal (frequency drift vs temperature).

The required register value "XTAL Coef" is calculated as follow:

XTAL Coef = Xtal_{TEMPERATURE COEFFICIENT} x 4096 x 1.05

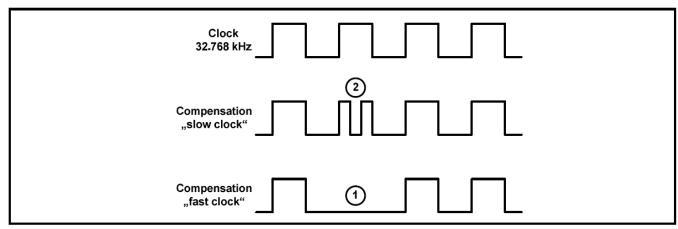
XTAL T0 Turnover Temperature (address 33h...bits description)

Address	Function	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
33h	XTAL T ₀	X	X	32	16	8	4	2	1
Bit	Symbol	Value	Description						
7 to 6	X	-	Unused						
5 to 0	$XTAL T_0^{-1)}$	4 to 67	Xtal's Turnover Temperature in °C						

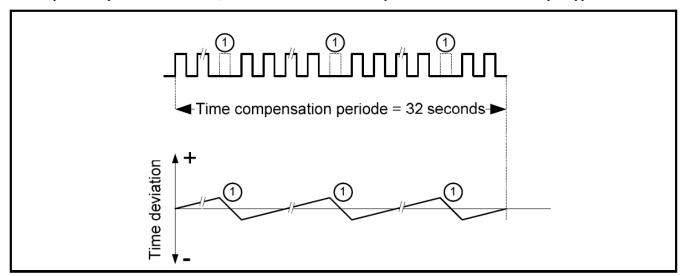
¹⁾ The factory programmed register value XTAL T0 may also contain thermometer error compensation.

The register value "XTAL T_0 " is used by the Frequency Compensation Unit "FCU" to compensate the frequency deviation caused by the turnover temperature T_0 of the 32.768 kHz crystal.

The required register value "XTAL T₀" is calculated as follow:


 $XTAL T_0 = Xtal_{TURNOVER TEMP T0} - 4$

5.3 METHOD OF COMPENSATING THE FREQUENCY DEVIATION


The Frequency Compensation Unit (FCU) calculates every 32 seconds the compensation factor needed to obtain accurate time information. The compensation is made by adding or subtracting correction clocks to the 32.768 kHz reference frequency at the first stage of the frequency divider chain, thereby changing the period of a single second.

Extra clocks are added for to speed-up the timing, subtracting clocks to slow-down the timing.

- (1) If 32.768 kHz Clock too fast: then 32.768kHz clocks are suppressed to obtain a compensated and accurate RTC timing.
- ② If 32.768 kHz Clock too slow: then extra correction clocks are added to obtain a compensated and accurate RTC time.

Each compensation period takes 32 seconds. Correction clocks are periodically applied during one complete compensation period. Within a compensation period of 32 seconds, one correction clock will compensate the time information by ± 1 ppm.

① **Time compensation cycle 32 seconds**: within a time compensation cycle of 32 seconds, the required numbers of 32.768kHz clocks are periodically suppressed (or added) to compensate the anticipated deviation of 32.768kHz reference clock.

Effect of correction clocks:

• CLKOUT 32.768 kHz: not affected, this frequency is not compensated affected, these frequencies are compensated • CLKOUT 1024 / 32 / 1 Hz:

• Timer / TNT Output: affected; the internal Timer Source Clocks are compensated • Time / Date: affected; time & date information are compensated

5.3.1 CORRECT METHOD FOR TESTING THE TIME ACCURACY

The compensation method of adding or subtracting correction clocks is changing the period of a single second; therefore the duration of single seconds may vary within a compensation cycle of 32 seconds.

For a test result correctly representing the time accuracy of the RTC module, it is mandatory to measure the device during one complete compensation cycle of 32 seconds.

When the device is tested over a shorter period of time, an error will be caused by the test method and shall be considered for interpretation of the test-results:

Measuring Time	Resolution of Compensation Method	Test Error / Deviation per Day
1 second	± 1 clock ($\overline{32.768}$ kHz)	\pm 30.5 ppm / \pm 2.7 sec. per day
2 seconds	± 1 clock (32.768 kHz)	\pm 15.3 ppm / \pm 1.3 sec. per day
4 seconds	± 1 clock (32.768 kHz)	\pm 7.7 ppm / \pm 0.7 sec. per day
8 seconds	± 1 clock (32.768 kHz)	\pm 3.9 ppm / \pm 0.4 sec. per day
32 seconds	± 1 clock (32.768 kHz)	represents real performance

5.3.2. TESTING THE TIME ACCURACY USING CLKOUT OUTPUT

The simplest method to test the time accuracy of the Frequency Compensation Unit (FCU) is by measuring the compensated frequencies at the CLKOUT pin.

Enable temperature compensation:

• Select scanning interval 1 s: set "ThP" = "0" (bit 0 register EEPROM Control) • Enable thermometer: set "ThE" = "1" (bit 1 register EEPROM Control)

Select compensated frequency at CLKOUT:

set "FD0" / "FD1" (bits 1&3 register EEPROM Control) to select • Set CLKOUT frequency:

CLKOUT frequency = 1024Hz or alternatively 1Hz

Measuring equipment and setup:

• Use appropriate frequency counter: for example Agilent A53132A Universal Counter

• Correct setup: set gate time to 32 seconds (one complete compensation cycle) to measure

frequency and calculate time deviation upon the measured frequency deviation

5.3.3 TESTING THE TIME ACCURACY USING INTERRUPT OUTPUT 1 Hz

The internal Countdown Timer can be used to generate a 1 Hz test signal at the $\overline{\rm INT}$ output. However, this procedure is more complicated than using CLKOUT, therefore the following instructions shall be read carefully to avoid mistakes.

Enable temperature compensation:

Select scanning interval 1 s: set "ThP" = "0" (bit 0 register EEPROM Control)
 Enable thermometer: set "ThE" = "1" (bit 1 register EEPROM Control)

Set appropriate test condition using Countdown Timer & 1 Hz INT Output:

Disable Timer: set "TE" = "0" (bit 1 register Control_1)
Disable Timer Auto-Reload Mode: set "TAR" = "0" (bit 2 register Control 1)

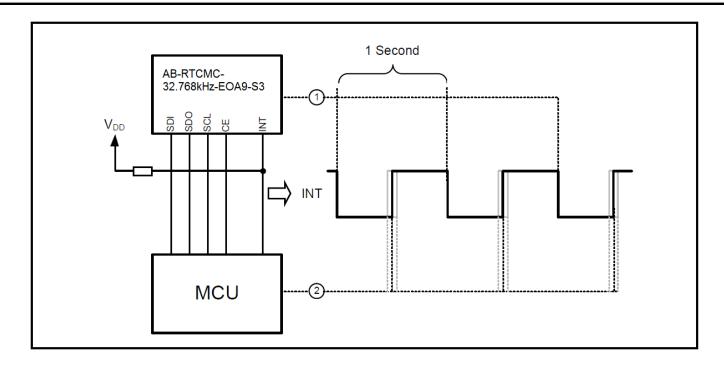
Timer & Timer Auto Reload Mode needs to be disabled to allow changes in settings of the Timer Source Clock and Countdown Timer value.

Set Timer Source Clock = 8 Hz: set "TD0" = "1"& "TD1" = "0" (bit 5&6 register Control_1)
 Set Countdown Timer Value n = 7: set register "Timer Low" = 07h (bit 0-7 register Timer Low) set register "Timer High" = 00h (bit 0-7 register Timer High)
 Enable Timer Interrupt: set "TIE" = "1" (bit 1 register Control_INT)

Set Timer in Auto-Reload Mode:
 Enable Timer:
 set "TAR" = "1" (bit 2 register Control_1)
 set "TE" = "1" (bit 1 register Control_1)

Prepare MCU Software Driver to clear INT signal:

• MCU clears INT signal: clear INT by setting "TF" = "0" (bit 1 register Control INT Flag)


Measuring equipment and setup:

• Use appropriate frequency counter: for example Agilent A53132A Universal Counter

• Gate time: set gate time to 32 seconds (one complete compensation cycle)

• Trigger to negative slope: set trigger to falling edge (negative slope)

① INT Output is active LOW.

That means the falling edge of the INT signal is generated by the AB-RTCMC-32.768kHz-EOA9-S3.

When testing the time-accuracy by using INT signal it is mandatory to trigger on the falling edge of the Interrupt signal.

② The rising edge of the $\overline{\text{INT}}$ signal is generated when the MCU clears the Interrupt signal by software. The timing of the rising edge depends on the MCU and must not be used to test the time-accuracy.

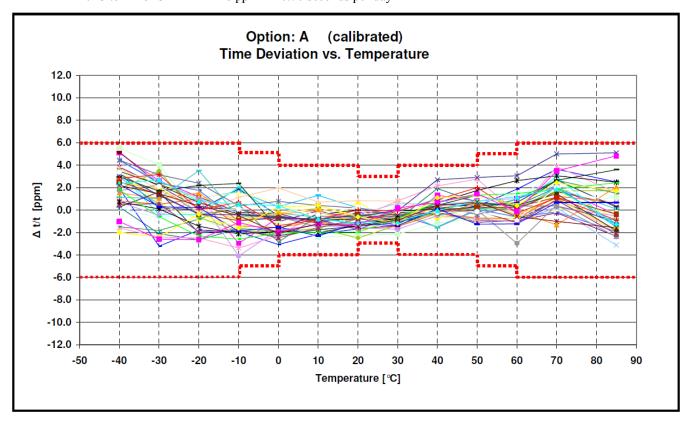
5.4 TIME ACCURACY OPT: A / OPT: B

Option A: parts individually calibrated over the temperature range

To obtain the best possible accuracy over the temperature-range, Option A parts are individually calibrated over the entire temperature range.

XTAL offset: Frequency deviation @ 25°C Individually compensated

XTAL T₀: Turnover temperature Individually calibrated over temperature XTAL temp. coefficient: Frequency drift vs temperature Thermometer error: Thermometer accuracy Individually acquired over temperature, correction value individually embedded


in XTAL parameters

Every part AB-RTCMC-32.768kHz-EOA9-S3Opt: A is individually measured over the temperature range to derive thermometer's and crystal's characteristics over the temperature range in order to achieve optimized time accuracy. Based on the temperature data, frequency correction values are calculated and individually programmed into the corresponding EEPROM register by the factory.

Below chart shows the time deviation of 30 tested devices over the temperature range of 30 individually calibrated RTC's (Opt: A) after the components were reflow soldered onto a PCB, the red dotted line shows the specified time accuracy for Option: A devices.

Option A:	Temperature range	Time deviation
	25°C	± 3 ppm = ± 0.26 seconds per day
	0° C to + 50° C	$\pm 4 \text{ ppm} = \pm 0.35 \text{ seconds per day}$
	-10°C to $+60$ °C	± 5 ppm = ± 0.44 seconds per day
	$40^{\circ}C + 0 + 85^{\circ}C$	± 6 nnm $= \pm 0.52$ seconds per day

 -40° C to $+85^{\circ}$ C ± 6 ppm = ± 0.52 seconds per day ± 8 ppm = ± 0.70 seconds per day

Option B: parts individually calibrated based on generic temperature data

The Option: B devices are designed for an optimized trade off accuracy vs cost. Option B parts are individually programmed to compensate the frequency deviation at 25°C but using generic batch data to compensate the crystal's temperature characteristics. Option B parts offer a good time accuracy at little cost.

XTAL offset: Frequency deviation @ 25°C Individ

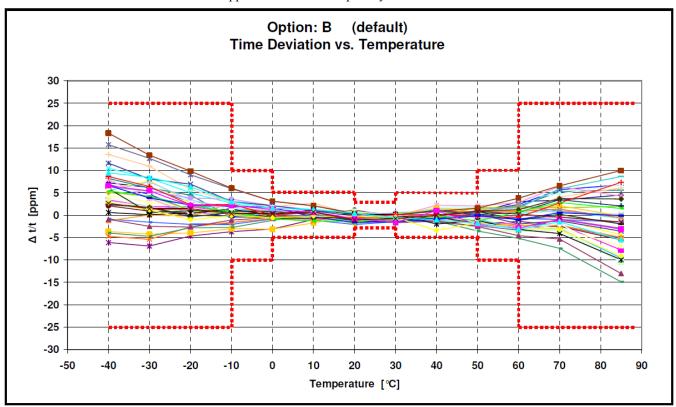
XTAL T₀: Turnover Temperature
XTAL temp. coefficient: Frequency drift vs temperature
Thermometer error: Thermometer accuracy

Individually compensated

Compensated with generic batch data Compensated with generic batch data

Individually acquired at 25°C,

correction value individually embedded


in XTAL parameters

Samples of AB-RTCMC-32.768kHz-EOA9-S3 Opt: B parts are individually measured over the temperature range to derive the generic batch data for the thermometer's and crystal's characteristics over the temperature range. Based on the temperature data, frequency correction values are calculated and individually programmed into the corresponding EEPROM register by the factory.

Below chart shows the time deviation of 30 tested devices over the temperature-range of individually calibrated RTC's (Opt: B) after the components were reflow soldered onto a PCB, the red dotted line shows the specified time accuracy for Option: B devices.

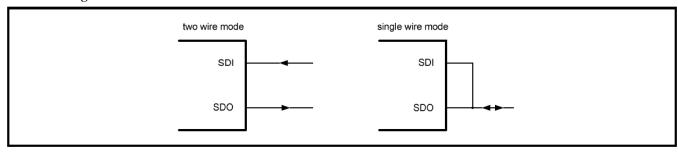
Option B: Temperature range	Time deviation
------------------------------------	----------------

25°C	\pm 3 ppm = \pm 0.26 seconds per day
0° C to + 50° C	\pm 5 ppm = \pm 0.44 seconds per day
-10° C to $+60^{\circ}$ C	$\pm 10 \text{ ppm} = \pm 0.87 \text{ seconds per day}$
-40° C to $+85^{\circ}$ C	± 25 ppm = ± 2.17 seconds per day
-40°C to +125°C	$\pm 30 \text{ ppm} = \pm 2.60 \text{ seconds per day}$

6.0 SPI INTERFACE

SPI Interface connects Master and one or multiple Slave devices. Data transfer to and from the devices is made via a 4-wire (3-wire) SPI bus. The four lines are: Chip Enable (CE), Serial-CLock (SCL), Serial-Data-Output (SDO) and Serial-Data-Input (SDI).

The chip enable signal CE is used to enable the considered device and to identify the transmitted data.

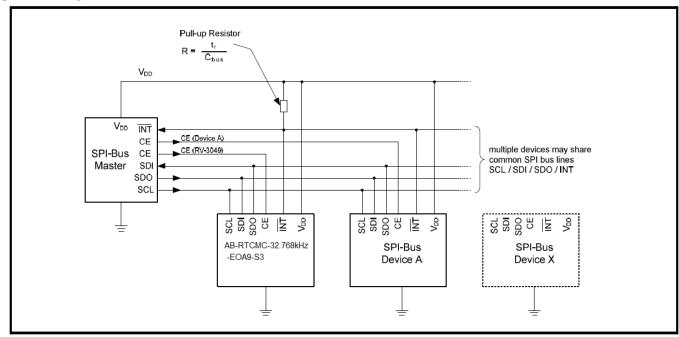

The data lines for input and output are split into two separate lines. However, the Data-Input SDI and Data-Output SDO lines can be connected together to facilitate a bidirectional data bus in single wire mode.

6.1 SPI INTERFACE SYSTEM CONFIGURATION

SPI Serial Interface

Symbol	Function	Description
SCL	Serial Clock Input	Serial Clock Input pin; this Input may float when CE is LOW (inactive), may be higher than $V_{\rm DD}$
SDI	Serial Data Input	Serial Data Input pin; this Input may float when CE is LOW (inactive), may be higher than V_{DD} ; input data is sampled on the rising edge of SCL
SDO	Serial Data Output	Serial Data Output pin; push-pull drives from V_{SS} to V_{DD} ; high-impedance when not driving; can be connected to SDI for single-wire data line, output data is changed on the falling edge of SCL
СЕ	Chip Enable Input	Chip Enable input active HIGH but may not be wired permanently HIGH, with internal $100k\Omega$ pull-down resistor, when LOW the interface is reset.

SDI / SDO Configurations



Note:

The data lines for input and output are split into two separate lines, however, the Data-Input SDI and Data-Output SDO lines can be connected together to facilitate a bidirectional data bus in single wire mode.

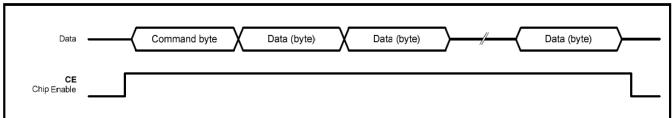
Application Diagram

6.2 SPI INTERFACE DATA TRANSMISSION

The data transmission is controlled by the active HIGH chip enable signal CE. The data transfer is initiated by the Master by raising the chip enable signal CE of the considered Slave device to "1".

At the beginning of SPI bus data transmission, a copy of the content of the addressed Watch, Alarm, Timer and Temperature registers is stored into a cache memory. During read / write operation, data are provided from this cache memory.

To prevent faulty reading, data in the cache memory are kept stable until the SPI bus data transmission is terminated. When the Master is pulling the CE to "0", the content of the modified registers in the cache memory are copied back into the corresponding Watch, Alarm, Timer and Temperature registers.

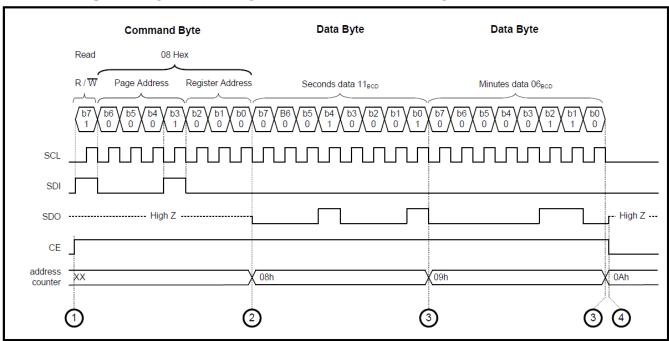

Each data transfer is a byte, with the Most Significant Bit (MSB) sent first. The first byte transmitted is the Command Byte, defining the address of the first register to be accessed and the read or write mode.

One data bit is transferred during each SCL clock pulse. Data are sampled on the rising edge of the SCL clock and internally transferred on the falling edge of the SCL clock. In idle mode, SCL shall be LOW.

The register address (within the same page) will automatically increment after transmission of every byte. The page address remains unchanged until data transfer is stopped and a new data transfer is initiated. Therefore, CE must return LOW before a new data transfer can be executed.

Data transfer is terminated by the Master by pulling the chip enable CE of the addressed Slave device to "0".

Data Transfer Overview


6.2.1 COMMAND BYTE DEFINITION

Bit	Symbol	Value	Description
7	R/W	0	Write data; master writes data on the SDI line
/	K/ W	1	Read data; AB-RTCMC-32.768kHz-EOA9-S3 writes data on the SDO line
6 to 3	PA	-0xxx	Page Address; the not transmitted bit 7 of the page address is set internally to = "0"
2 to 0	RA	000 111	Register Address; will be automatically incremented after transmission of each byte

6.2.2 SPI INTERFACE READ / WRITE EXAMPLES

Serial bus read example (reading the Seconds register address 08h and Minutes register address 09h)

① CE goes "High": transmission starts. SPI interface of the AB-RTCMC-32.768kHz-EOA9-S3 is enabled.

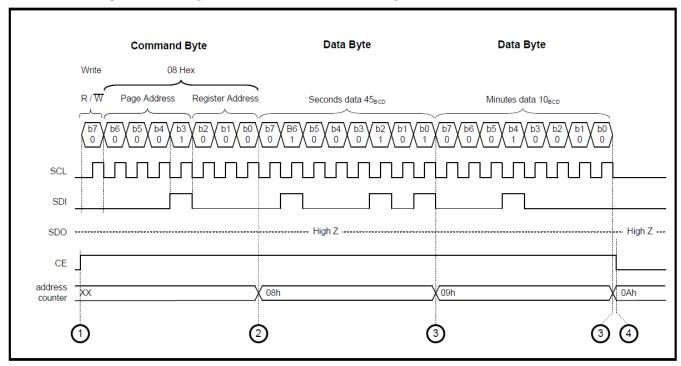
② After sending Command Byte: the command byte sets the AB-RTCMC-32.768kHz-EOA9-S3 in "Read Mode", the

SDO pin becomes active. The Page & Register address to 08h (Clock page;

Seconds register).

3 After reading Data Byte: after transmission of every data byte, the register address is automatically incremented.

4 CE goes "Low": transmission stops. SPI Interface of the AB-RTCMC-32.768kHz-EOA9-S3 is disabled,


DO becomes High-Z.

Note:

In this example, the Seconds and Minutes registers are read. Pins SDI and SDO are not connected together; in this configuration it is important that SDI pin is never left floating. It always must be driven either HIGH or LOW. If pin SDI is left open, high I_{DD} currents may result; short transition periods in the order of 200 ns will not cause any problems.

Serial bus write example (Seconds register set to 45 seconds, Minutes register set to 10 minutes)

① CE goes "High": transmission starts. SPI interface of the AB-RTCMC-32.768kHz-EOA9-S3 is enabled.

② After sending Command Byte: the command byte sets the AB-RTCMC-32.768kHz-EOA9-S3 in "Write Mode", the SDO

pin remains in High-Z mode. The Page & Register address are set to 08h (Clock page;

Seconds register).

3 After writing Data Byte: after writing of every data byte, the register address is automatically incremented.

(4) CE goes "Low": transmission stops. SPI Interface of the AB-RTCMC-32.768kHz-EOA9-S3 is disabled,

SDO remains High-Z.

Note:

In this example, the Seconds and Minutes registers are written. Pins SDI and SDO are not connected together, since the device is accessed in write mode the SDO line remains High-Z during the whole transmission.

7.0 ELECTRICAL CHRACTERISTICS

7.1 ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System IEC 60134

Parameters	Symbol	Conditions	Min.	Max.	Units
Supply Voltage	V_{DD}	>GND / <v<sub>DD</v<sub>	GND-0.3	+6.0	V
Supply Current	$I_{DD}; I_{SS}$	V_{DD} Pin	-50	+50	mA
Input Voltage	$V_{\rm I}$	Input Pin	GND-0.3	V _{DD} +0.3	V
Output Voltage	V_{O}	INT/CLKOUT	GND-0.5	V _{DD} +0.5	V
DC Input Current	$I_{\rm I}$		-10	+10	mA
DC Output Current	I_{O}		-10	+10	mA
Total Power Dissipation	P_{TOT}			300	mW
Operating Ambient Temperature Range	T_{OPR}		-40	+125	°C
Storage Temperature Range	T_{STO}	Stored as bard product	-55	+125	°C
Electro Static Discharge Voltage	V_{ESD}	HBM ¹⁾ MM ²⁾		±2000 ±300	V
Latch-up Current	I_{LU}	3)		200	mA

¹⁾ HBM: Human Body Model, according to JESD22-A114.

Stresses above these listed maximum ratings may cause permanent damage to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

²⁾ MM: Machine Model, according to JESD22-A115.

³⁾ Latch-up testing, according to JESD78.

7.2 FREQUENCY AND TIME CHARACTERISTICS

 V_{DD} = 3.0 V; V_{SS} = 0 V; T_{amb} = +25°C; f_{OSC} = 32.768 kHz

Parameters	Symbol	Conditions	Тур.	Max.	Units	
32.768kHz Oscillator Characteristics						
Frequency Accuracy	ΔF/F	F _{CLKOUT} =32.768kHz T _{AMB} =+25°C; V _{DD} =3.0V	±10	±20	ppm	
Frequency vs Voltage Characteristics	$\Delta F/(F\Delta V)$	T _{AMB} =+25°C; V _{DD} =1.4~5.5V	±0.5	±1.0	ppm/V	
Frequency vs Temp. Characteristics	$\Delta F/F_{OPR}$	T_{OPR} =-40 ~ +125°C; V_{DD} =3.0V	-0.035ppm/ T _O) ² ±	$^{\circ}C^{2}(T_{OPR}-10\%)$	ppm	
Turnover Temperature	T_0		+25	±5	°C	
Aging first year	ΔF/F	$T_{AMB}=+25^{\circ}C$		±3	ppm	
Oscillation Start-up Voltage	V_{START}	T _{AMB} =+25°C; T _{START} <10s	1.0		V	
Oscillation Start-up Time	T_{START}	T _{AMB} =-40~ +85°C	0.5	3	S	
		T _{AMB} =-40~ 125°C	1	3		
CLKOUT duty cycle		F _{CLKOUT} =32.768kHz T _{AMB} =+25°C	50	40/60	%	
Time Accuracy, DTCXO Digitally Tem	perature Cor	npensated				
		$T_{AMB}=+25^{\circ}C$	±1	±3		
		$T_{AMB}=0 \sim +50^{\circ}C$	±2	±4	ppm	
Time Accuracy Opt: A	$\Delta t / t$	$T_{AMB} = -10 \sim +65^{\circ}C$	±3	±5		
		T_{AMB} =-40 ~ +85°C	±4	±6		
		T_{AMB} =-40 ~ +125°C	±5	±8		
		$T_{AMB}=+25^{\circ}C$	±1	±3		
		$T_{AMB}=0 \sim +50$ °C	±3	±5	ppm	
Time Accuracy Opt: B	$\Delta t / t$	T_{AMB} =-10 ~ +65°C	±5	±10		
		T_{AMB} =-40 ~ +85°C	±10	±25		
		T_{AMB} =-40 ~ +125°C	±15	±30		

7.3 STATIC CHARACTERISTICS

 $V_{DD} = 1.4 \text{ V to } 5.5 \text{ V}; V_{SS} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C to } +125 ^{\circ}\text{C}; f_{OSC} = 32.768 \text{ kHz}$

Parameters Symbol		Conditions	Min.	Тур.	Max.	Units
Supplies						
Supply Voltage	$V_{ m DD}$	Time-keeping mode SPI bus reduced speed	1.4		5.5	V
suff-) · ······g·	· DD	SPI bus full speed	3.0		5.5	V
Min. Supply Voltage Detection	V_{LOW1}	T _{amb} =-40 ~+125°C	1.8		2.1	V
Min. Supply Voltage Detection	V_{LOW2}	T _{amb} =-40 ~+125°C	1.0		1.4	V
Main Supply to Backup Supply Switchover Hysteresis	$V_{ m HYST}$	V_{DD} to $V_{BACK} = 3.0V$		20		mV
		$V_{\rm DD} = 1.4 V$ $T_{\rm amb} = -40 \sim +85 ^{\circ} {\rm C}$		0.6	1.5	μΑ
	T	$V_{DD} = 1.4V$ $T_{amb} = -40 \sim +125$ °C			4.6	μΑ
Supply Current SPI bus inactive CLKOUT disabled	I_{DD} $(V_{BACK}=0V)$ Or I_{BACK} $(V_{DD}=0V)$	$V_{\rm DD} = 3.3 V$ $T_{\rm amb} = -40 \sim +85 ^{\circ} {\rm C}$		0.8	2.0	μΑ
$V_{BACK} = 0V$ Or $V_{DD} = 0V$		$V_{DD} = 3.3V$ $T_{amb} = -40 \sim +125$ °C			5.2	μΑ
		$V_{DD} = 5.0V$ $T_{amb} = -40 \sim +85^{\circ}C$		0.9	2.2	μΑ
		$V_{DD} = 5.0V$ $T_{amb} = -40 \sim +125$ °C			5.5	μΑ
		$SCL=200kHz$ $V_{DD}=1.4V$ $T_{amb}=-40 \sim +85^{\circ}C$			14	μΑ
	$ m I_{DD}$	$SCL=200kHz$ $V_{DD}=1.4V$ $T_{amb}=-40 \sim +125^{\circ}C$			18	μА
Supply Current SPI bus active CLKOUT disabled		$SCL= 1MHz$ $V_{DD} = 3.3V$ $T_{amb} = -40 \sim +85^{\circ}C$			50	μΑ
		$SCL=1MHz$ $V_{DD}=3.3V$ $T_{amb}=-40 \sim +125^{\circ}C$			55	μА
		$SCL= 1MHz$ $V_{DD} = 5.0V$ $T_{amb} = -40 \sim +85^{\circ}C$			65	μΑ
		$SCL= 1MHz$ $V_{DD} = 5.0V$ $T_{amb} = -40 \sim +125^{\circ}C$			75	μА

(Continued)


Parameters	Symbol	Conditions	Min.	Тур.	Max.	Units	
Current Consumption		$V_{DD} = 5.0V$		2.5	3.4		
SPI bus inactive CLKOUT=32.768kHz	I_{DD32K}	$V_{DD} = 3.3V$		1.5	2.2	μΑ	
$C_{LOAD} = 7.5 pF$		$V_{DD} = 1.4V$		1.1	1.6	1	
Inputs							
LOW Level Input Voltage	V_{IL}	$V_{DD} = 1.4 \text{V to } 5.0 \text{V}$			$20\%V_{DD}$	V	
HIGH Level Input Voltage	V_{IH}	Pins:SCL,SDI,CLKOE,CE	$80\%V_{DD}$			V	
Input Leakage Current	т	T _{amb} =-40 ~+85°C	-1		+1	μA	
$V_{SS} > V_I < V_{DD}$	${ m I_L}$	T _{amb} =-40 ~+125°C	-1.5		+1.5	μΑ	
Input Capacitance	C_{I}				7	pF	
Outputs							
		$V_{DD} = 1.4V; I_{OH} = 0.1 \text{mA}$	1.0			V	
HIGH Level Output Voltage	V_{OH}	$V_{DD} = 3.3V; I_{OH} = 1.5mA$	2.7				
		$V_{DD} = 5.0V; I_{OH} = 2.0mA$	4.5				
LOW Level Output Voltage	$ m V_{OL}$	$V_{DD} = 1.4V; I_{OL} = 0.4mA$			0.2	V	
		$V_{DD} = 3.3V; I_{OL} = 1.5 \text{mA}$			0.25		
		$V_{DD} = 5.0V; I_{OL} = 5.0mA$			0.8		
HIGH Level Output Current	I_{OH}	$V_{DD} = 4.5 V/V_{DD} = 5 V$			2.0	mA	
LOW Level Output Current	I_{OL}	$V_{DD} = 0.8V/V_{DD} = 5V$			-5.0	mA	
Output Leakage Current	I_{LO}	$V_O = V_{DD}$ or V_{SS} $T_{amb} = -40 \sim +85$ °C	-1	0	+1	μА	
Output Leakage Current		$V_O = V_{DD}$ or V_{SS} T_{amb} =-40 ~+125°C	-1.5	0	+1.5		
Operating Temperature Range							
Operating Temperature Range	T_{OPR}		-40		+125	°C	
EEPROM Characteristics							
Read Voltage	V_{Read}	T _{amb} =-40 ~+125°C	1.4			V	
Programming Voltage	V_{Prog}	T _{amb} =-40 ~+125°C	2.2			V	
EEPROM Programming Time		T _{amb} =-40 ~+125°C 1 Byte EEPROM User			35	ms	
	T_{Prog}	T _{amb} =-40 ~+125°C 1 Byte EEPROM Control			100	ms	
		T _{amb} =-40 ~+125°C 2-4 Byte EEPROM Control			135	ms	
EEPROM Write/Erase Cycles	V_{HYST}	$V_{\rm DD}$ to $V_{\rm BACK} = 3.0 V$	5000			Cycles	

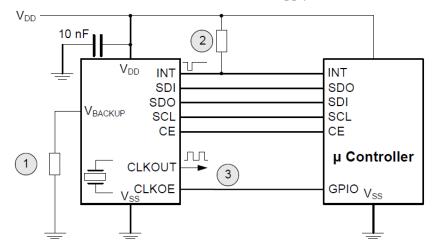
(Continued)

Parameters	Symbol	Conditions	Min.	Тур.	Max.	Units	
Trick Charger							
	R80k	T_{amb} =+25°C		80			
Current Timing Resistors $V_{DD} = 5.0V$ $V_{BACK} = 3.0V$	R20k	T_{amb} =+25°C		20		1:0	
	R5k	T_{amb} =+25°C		5		kΩ	
	R1.5k	T_{amb} =+25°C		1.5			
Thermometer							
Thermometer Precision	т	T_{amb} =-40 ~ +85°C		±4		°C	
Thermometer Precision	T_{E}	T_{amb} =-40 ~ +125°C		±6			

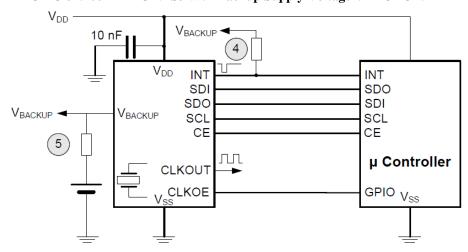
7.4 SPI INTERFACE TIMING CHARACTERISTICS

7.5 DYNAMIC CHARACTERISTICS SPI-BUS

 V_{SS} = 0 V; T_{amb} = -40°C to +125°C; All timing values are valid within the operating supply voltage range and references to V_{IL} and


 V_{IH} with an input voltage swing from V_{SS} to V_{DD} .

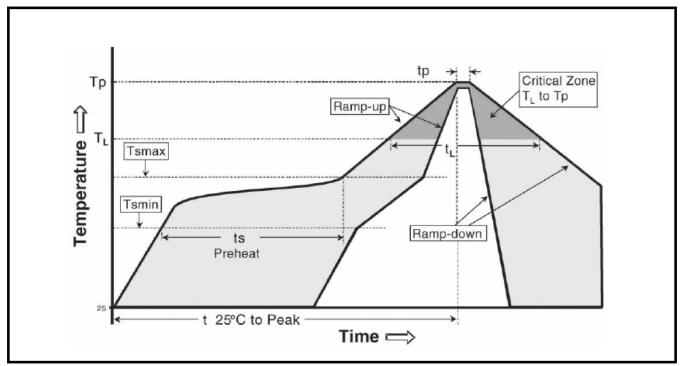
Donomoto	G 1:	Notes	V _{DD} =	=1.6V	V_{DD} =2.4 V		V _{DD} =	=3.3V	V_{DD} =5.0 V		T T 14
Parameters	Symbol	Notes	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
SCL Clock Frequency	$f_{clk(SCL)}$			0.2		0.6		1.0		1.0	MHz
SCL Time	t_{SCL}		5		1.7		1		1		μs
Clock HIGH Time	t _{clk(H)}		1500		700		400		400		ns
Clock LOW Time	t _{clk(L)}		1500		700		400		400		ns
Rise Time	t_r	For SCL signal		800		800		200		200	ns
Fall Time	$t_{\rm f}$	For SCL signal		800		800		200		200	ns
CE Setup Time	t _{su(CE)}		100		100		100		100		ns
CE Hold Time	t _{h(CE)}		500		300		200		200		ns
CE Recovery Time	$t_{rec(CE)}$		400		300		200		200		ns
CE Pulse Width	$t_{w(CE)}$	Measured after valid subaddress is received		0.49		0.49		0.49		0.49	S
Setup Time	t_{su}	Setup time for SDI data	20		20		20		20		ns
Hold Time	$t_{\rm h}$	Hold time for SDI data	500		300		200		200		ns
SDO Read Delay Time	$t_{d(R)SDO}$	Bus load = 50pF		1300		650		350		350	ns
SDO Disable Time	$t_{ m dis(SDO)}$	No load value; bus will be held up by bus- capacitance; use RC time constant with application values		200		100		50		50	ns
Transition Time SDI to SDO	$t_{t(\mathrm{SDI-SDO})}$	Prepare for 0s to avoid bus conflict	0		0		0		0		ns


8.0 APPLICATION INFORMATION

Operating AB-RTCMC-32.768kHz-EOA9-S3 without VBACKUP Supply:

- ① When operating the AB-RTCMC-32.768kHz-EOA9-S3 without Backup Supply Voltage, it is recommended to tie V_{BACKUP} pin to GND, 10 kOhm resistor is recommended.
- (2) Pull-up resistor of the $\overline{\text{INT}}$ signal can be tied directly to supply voltage V_{DD} .
- ③ CLKOUT is enabled when CLKOE input is high. It either can be permanently enabled with a pull-up resistor to supply voltage V_{DD} or actively controlled by the μ Controller. If no clock function is needed, it is recommended to disable CLKOUT by permanently tie CLKOE pin with a pull-down resistor to GND.

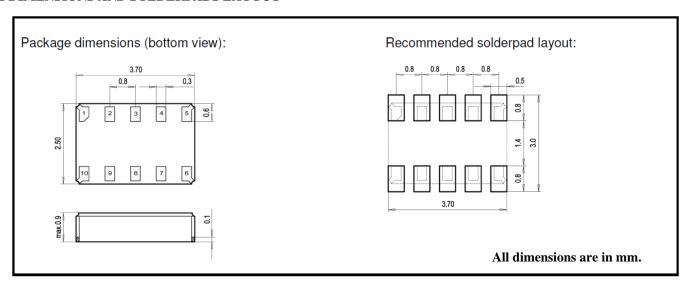
Operating AB-RTCMC-32.768kHz-EOA9-S3 with Backup Supply Voltage VBACKUP:



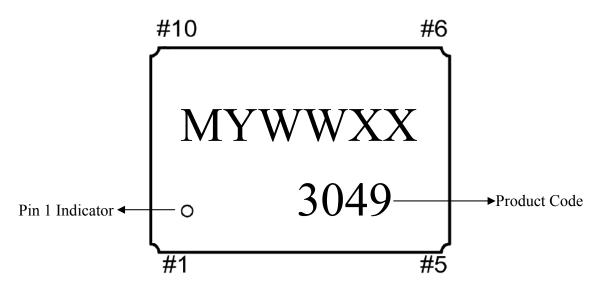
- \bigcirc When operating the AB-RTCMC-32.768kHz-EOA9-S3 with either Supercap or Lithium Battery as Backup Supply, the \bigcirc INT signal also works when the device operates on V_{BACKUP} supply voltage. Therefore it is recommended to tie the \bigcirc INT pull-up resistor to V_{BACKUP} .
- (5) When a Lithium Battery is used, it is recommended to insert a protection resistor of 100 1'000 Ohm to limit battery current and to prevent damage in case of soldering issues causing short between supply pins.

8.1 RECOMMENDED REFLOW TEMPERATURE (LEADFREE SOLDERING)

Maximum Reflow Conditions in accordance with IPC/JEDEC J-STD-020C "Pb-free"



Temperature	Symbol	Conditions	Units
Average Ramp-up Rate	T_{Smax} to T_{P}	3°C/second max	°C/s
Ramp Down Rate	T_{cool}	6°C/second max	°C/s
Time 25°C to Peak Temperature	T to-peak	8 minutes max	m
Preheat			
Temperature Min	T_{Smin}	150	°C
Temperature Max	T_{Smax}	200	°C
Time Ts _{min} to Ts _{max}	ts	60 ~ 180	sec
Time Above Liquidus			
Temperature Liquidus	$T_{\rm L}$	217	°C
Time above Liquidus	$t_{\rm L}$	60~150	sec
Peak Temperature			
Peak Temperature	T_{P}	260	°C
Time within 5°C of Peak Temperature	t_{P}	20 ~ 40	sec



9.0 PACKAGES

9.1 DIMENSIONS AND SOLDERPADS LAYOUT

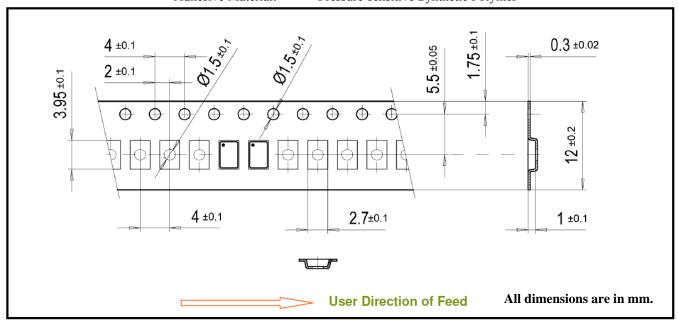
9.2 MARKING AND PIN #1 INDEX

M: Internal Code

Y: Year. e.g. 3 for 2013

WW: Week. e.g 08 for the 8th week of the year

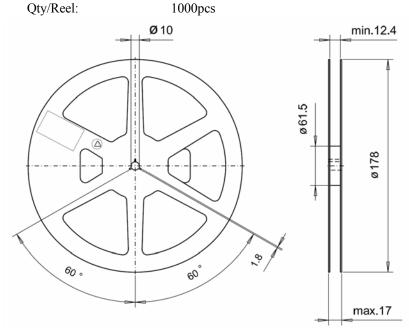
XX: Lot Code



10.0 PACKING INFO

10.1 CARRIER TAPE

12 mm Carrier-Tape: Material: Polystyrene / Butadine or Polystyrol black, conductive


Cover Tape:Base Material: Polyester, conductive 0.061 mm
Adhesive Material: Pressure-sensitive Synthetic Polymer

Tape Leader and Trailer: 300 mm minimum.

10.2 REEL 7 INCH FOR 12MM TAPE

7" Reel: Plastic, Polystyrol

All dimensions are in mm.

11.0 HANDLING PRECAUTIONS FOR CRYSTALS OR MODULES WITH EMBEDDED CRYSTALS

The built-in tuning-fork crystal consists of pure Silicon Dioxide in crystalline form. The cavity inside the package is evacuated and hermetically sealed in order for the crystal blank to function undisturbed from air molecules, humidity and other influences.

Shock and vibration

Keep the crystal from being exposed to **excessive mechanical shock and vibration**. Abracon guarantees that the crystal will bear a mechanical shock of 5000g / 0.3 ms.

The following special situations may generate either shock or vibration:

Multiple PCB panels - Usually at the end of the pick & place process the single PCBs are cut out with a router. These machines sometimes generate vibrations on the PCB that have a fundamental or harmonic frequency close to 32.768 kHz. This might cause breakage of crystal blanks due to resonance. Router speed should be adjusted to avoid resonant vibration.

Ultrasonic Cleaning - Avoid cleaning processes using ultrasonic energy. These processes can damages crystals due to mechanical resonance of the crystal blank.

Overheating, rework high-temperature-exposure

Avoid overheating the package. The package is sealed with a sealring consisting of 80% Gold and 20% Tin. The eutectic melting temperature of this alloy is at 280°C. Heating the sealring up to >280°C will cause melting of the metal seal which then, due to the vacuum, is sucked into the cavity forming an air duct. This happens when using hot-air-gun set at temperatures >300°C.

Use the following methods for re-work:

- Use a hot-air- gun set at 270°C
- Use 2 temperature-controlled soldering irons, set at 270°C, with special-tips to contact all solder-joints from both sides of the package at the same time, remove part with tweezers when pad solder is liquid.