Power MOSFET

3.0 A, 60 V, Logic Level, N-Channel SOT-223

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- AEC O101 Oualified NVF3055L108
- These Devices are Pb-Free and are RoHS Compliant

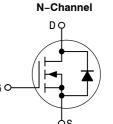
Applications

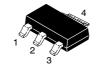
- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	60	Vdc
Drain-to-Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V_{DGR}	60	Vdc
Gate–to–Source Voltage - Continuous - Non-repetitive (t _p ≤ 10 ms)	V _{GS}	± 15 ± 20	Vdc Vpk
$\label{eq:decomposition} \begin{split} & \text{Drain Current} \\ & - \text{Continuous } \textcircled{0} \ T_{A} = 25^{\circ}\text{C} \\ & - \text{Continuous } \textcircled{0} \ T_{A} = 100^{\circ}\text{C} \\ & - \text{Single Pulse } (t_{p} \leq 10 \ \mu\text{s}) \end{split}$	I _D I _D	3.0 1.4 9.0	Adc Apk
Total Power Dissipation @ T _A = 25°C (Note 1) Total Power Dissipation @ T _A = 25°C (Note 2) Derate above 25°C	P _D	2.1 1.3 0.014	Watts Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 25 \text{ Vdc}, V_{GS} = 5.0 \text{ Vdc},$ $I_{L(pk)} = 7.0 \text{ Apk}, L = 3.0 \text{ mH}, V_{DS} = 60 \text{ Vdc})$	E _{AS}	74	mJ
Thermal Resistance -Junction-to-Ambient (Note 1) -Junction-to-Ambient (Note 2)	R _{θJA} R _{θJA}	72.3 114	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- When surface mounted to an FR4 board using 1" pad size, 1 oz. (Cu. Area 0.0995 in²).
- When surface mounted to an FR4 board using minimum recommended pad size, 2–2.4 oz. (Cu. Area 0.272 in²).



ON Semiconductor®

http://onsemi.com

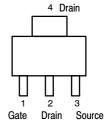
3.0 A, 60 V $R_{DS(on)} = 120 \text{ m}\Omega$

SOT-223 CASE 318E STYLE 3

AYW

3055L

MARKING DIAGRAM


3055L = Device Code

A = Assembly Location Y = Year

W = Work Week ■ Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Charac	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu\text{Adc})$ Temperature Coefficient (Positive)	V _{(BR)DSS}	60 -	68 68	- -	Vdc mV/°C	
Zero Gate Voltage Drain Current $(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 0 \text{ Vdc})$	I _{DSS}	- -	- -	1.0 10	μAdc	
Gate-Body Leakage Current (V _{GS}	$_{\rm S}$ = \pm 15 Vdc, $V_{\rm DS}$ = 0 Vdc)	I _{GSS}	-	-	± 100	nAdc
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$ Threshold Temperature Coefficient (N	V _{GS(th)}	1.0	1.68 4.6	2.0 -	Vdc mV/°C	
Static Drain-to-Source On-Resistan $(V_{GS} = 5.0 \text{ Vdc}, I_D = 1.5 \text{ Adc})$	R _{DS(on)}	-	92	120	mΩ	
Static Drain-to-Source On-Resistan ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 3.0 \text{ Adc}$) ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 1.5 \text{ Adc}$, $T_J =$	V _{DS(on)}	_	0.290 0.250	0.43 -	Vdc	
Forward Transconductance (Note 3)	(V _{DS} = 7.0 Vdc, I _D = 3.0 Adc)	9 _{fs}	-	5.7	-	Mhos
DYNAMIC CHARACTERISTICS			•	•	•	•
Input Capacitance		C _{iss}	-	313	440	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ V}, $ f = 1.0 MHz)	C _{oss}	-	112	160	
Transfer Capacitance		C _{rss}	-	40	60	
SWITCHING CHARACTERISTICS (No	ote 4)					
Turn-On Delay Time		t _{d(on)}	_	11	25	ns
Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 3.0 \text{ Adc},$	t _r	-	35	70	
Turn-Off Delay Time	$V_{GS} = 5.0 \text{ Vdc},$ $R_G = 9.1 \Omega) \text{ (Note 3)}$	t _{d(off)}	-	22	45	
Fall Time		t _f	-	27	60	
Gate Charge		Q _T	-	7.6	15	nC
	$(V_{DS} = 48 \text{ Vdc}, I_D = 3.0 \text{ Adc}, V_{GS} = 5.0 \text{ Vdc}) \text{ (Note 3)}$	Q ₁	-	1.4	-	
	1 43 0.0 1 40) (.10.0 0)	Q_2	-	4.0	-	
SOURCE-DRAIN DIODE CHARACTE	RISTICS					
Forward On-Voltage	rd On-Voltage $ \begin{array}{c} \text{(I}_S=3.0 \text{ Adc, V}_{GS}=0 \text{ Vdc)} \\ \text{(I}_S=3.0 \text{ Adc, V}_{GS}=0 \text{ Vdc,} \\ \text{T}_J=150^{\circ}\text{C) (Note 3)} \end{array} $		- -	0.87 0.72	1.0 -	Vdc
Reverse Recovery Time		t _{rr}	-	35	-	ns
	(I _S = 3.0 Adc, V _{GS} = 0 Vdc,	t _a	-	21	_	
	dl _S /dt = 100 A/μs) (Note 3)	t _b	-	14	-	
Reverse Recovery Stored Charge	Q _{RR}	-	0.044	-	μС	

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

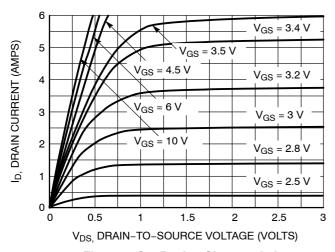


Figure 1. On-Region Characteristics

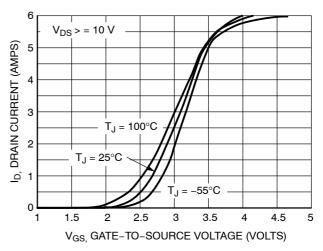


Figure 2. Transfer Characteristics

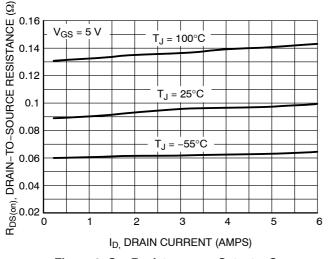


Figure 3. On-Resistance vs. Gate-to-Source Voltage

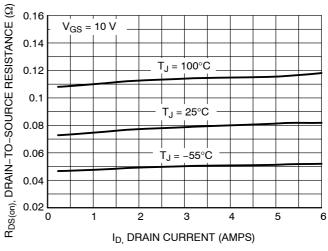


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

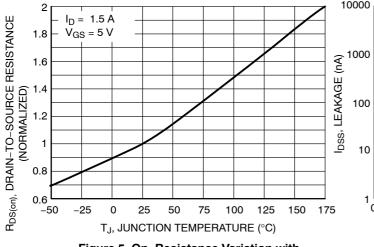


Figure 5. On–Resistance Variation with Temperature

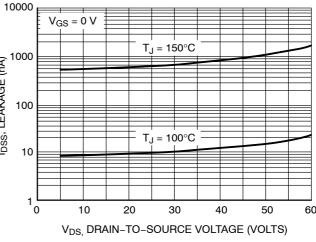


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

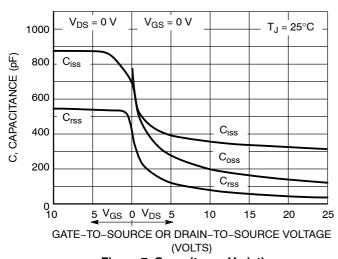


Figure 7. Capacitance Variation

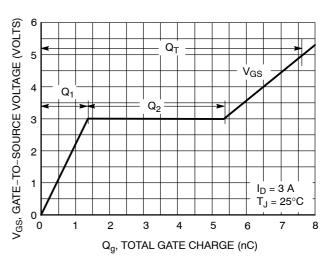


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

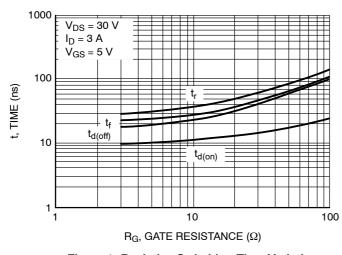


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

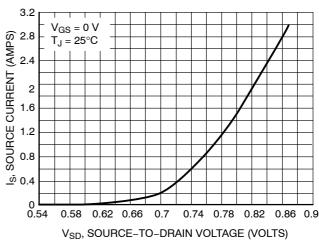


Figure 10. Diode Forward Voltage vs. Current

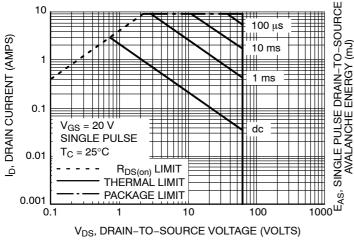


Figure 11. Maximum Rated Forward Biased Safe Operating Area

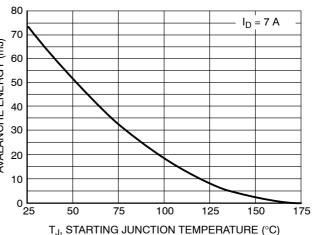


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL ELECTRICAL CHARACTERISTICS

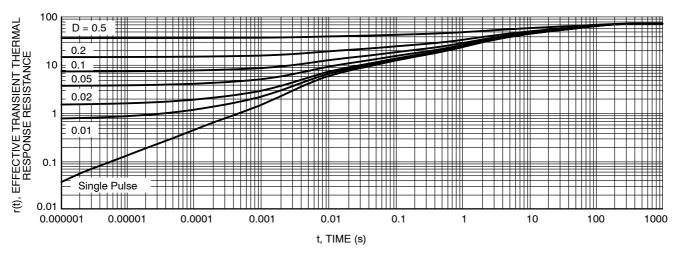
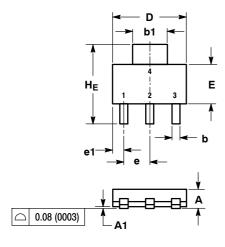
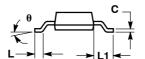


Figure 13. Thermal Response


ORDERING INFORMATION


Device	Package	Shipping [†]
NTF3055L108T1G	SOT-223 (TO-261) (Pb-Free)	1000 / Tape & Reel
NVF3055L108T1G	SOT-223 (TO-261) (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N

IOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
O	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
٦	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
ΗE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	_	10°

STYLE 3:

- PIN 1. GATE
 - 2. DRAIN 3. SOURCE
 - 4. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlitt@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative