PCF1252-X family
Threshold detector and reset generator

Product specification
Supersedes data of 1996 Jan 23
File under Integrated Circuits, IC11
Threshold detector and reset generator
PCF1252-X family

FEATURES

• Very low current consumption, typically 10 µA
• 10 factory programmed threshold voltages available covering trip voltages from 4.75 to 2.55 V
• ±50 mV trip point accuracy over full temperature range
• Variable RESET delay
• RESET pulse polarity selection
• Defined outputs at 0.6 V (typ.)
• Comparator for second level detection (e.g. overvoltage detection)
• Advance warning of power fail
• Operating temperature range −40 to +85 °C.

GENERAL DESCRIPTION

The PCF1252-Xs are low-power CMOS voltage threshold detectors designed especially for supervision of microcontroller/microprocessor systems for detection of power-on/off conditions and generation of a system reset pulse. The PCF1252-X also provides a POWF (power fail) output which is activated at a precise factory-programmed trip point. A system RESET output has a built-in delay with duration determined by an external capacitor (Cct).

A second comparator (comparator 2) has been included to enable the possibility of a second monitoring point in the system.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>NAME</th>
<th>PACKAGE</th>
<th>DESCRIPTION</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCF1252-XP(1)</td>
<td>DIP8</td>
<td>plastic dual in-line package; 8 leads (300 mil)</td>
<td>SOT97-1</td>
<td></td>
</tr>
<tr>
<td>PCF1252-XT(1)</td>
<td>SO8</td>
<td>plastic small outline package; 8 leads; body width 3.9 mm</td>
<td>SOT96-1</td>
<td></td>
</tr>
</tbody>
</table>

Note
1. X = 0 to 9; depending on threshold voltage.

BLOCK DIAGRAM

![Block diagram](image-url)
PINNING

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>1</td>
<td>connection for the external capacitor</td>
</tr>
<tr>
<td>SELECT</td>
<td>2</td>
<td>select polarity or external reset input</td>
</tr>
<tr>
<td>COMIN</td>
<td>3</td>
<td>comparator input</td>
</tr>
<tr>
<td>VSS</td>
<td>4</td>
<td>ground (0 V)</td>
</tr>
<tr>
<td>COMOUT</td>
<td>5</td>
<td>comparator output</td>
</tr>
<tr>
<td>RESET</td>
<td>6</td>
<td>reset output</td>
</tr>
<tr>
<td>POWF</td>
<td>7</td>
<td>power failure signal output</td>
</tr>
<tr>
<td>VDD</td>
<td>8</td>
<td>supply voltage</td>
</tr>
</tbody>
</table>

FUNCTIONAL DESCRIPTION (see Fig.1)

The PCF1252-X contains:

- A precise factory-programmed voltage reference
- Two comparators
- A delay circuit.

The PCF1252-X family is comprised of 10 versions with different factory-programmed voltage trip-points (V_{TRIP}), see Chapter “Characteristics”.

Supply

The supply voltage (V_{DD}) is internally divided before being compared, via comparator 1, with the internal reference voltage.

POWF (see Fig.3)

The POWF output is:

- LOW, if V_{DD} is below V_{TRIP}
- HIGH, if V_{DD} is above V_{TRIP}.

Power-on reset (SELECT = LOW)

As V_{DD} rises past V_{TRIP}, a positive reset pulse is generated at RESET. The duration of the reset pulse (t_{R}) is determined by the value of the external capacitor (C_{CT}; maximum 1 \mu F, see Fig.8) connected to CT. With no external capacitor connected, C_{CT} assumes a minimum value of 100 pF. If SELECT is HIGH, the reset pulse is inverted.

Power failure

During a power-off condition (V_{DD} < V_{TRIP}), POWF goes LOW. After a time delay (t_{S}), also determined by C_{CT}, RESET goes HIGH. Any POWF assertion (V_{DD} < V_{TRIP}) will result in a subsequent RESET pulse.

Voltage trip-point

By selecting the voltage trip-point slightly higher than the minimum operating voltage of the microcontroller/microprocessor, there is sufficient time for data storage before the power actually fails.

In order to prevent oscillations around the voltage trip-point, a small hysteresis has been included, resulting in a power-on switching point that is higher than the voltage trip-point (minimum of 15 mV). The voltage trip-point refers to the value at which power-off is signalled.

COMIN

Input to the second comparator (comparator 2). When used in conjunction with an external voltage divider, this allows a second point in the system to be monitored. This input has no built-in hysteresis. When not in use connect to V_{DD}. COMOUT will be LOW or HIGH depending on the voltage at COMIN:

- COMOUT = HIGH, if voltage at COMIN is above the switch point V_{SP} (typically 1.30 V).
- COMOUT = LOW, if voltage at COMIN is below the switch point V_{SP} (typically 1.30 V).
Limiting Values
In accordance with the Absolute Maximum Rating System (IEC 134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
<td>supply voltage</td>
<td></td>
<td>−0.5</td>
<td>+7.0</td>
<td>V</td>
</tr>
<tr>
<td>V_I</td>
<td>input voltage</td>
<td></td>
<td>−0.5</td>
<td>V_DD</td>
<td>V</td>
</tr>
<tr>
<td>I_I</td>
<td>DC clamp-diode current</td>
<td>all pins: V_I < −0.5 V or V_I > V_DD + 0.5 V</td>
<td>−</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>I_O</td>
<td>output current</td>
<td></td>
<td>−20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>P_tot</td>
<td>total power dissipation</td>
<td></td>
<td>−150</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>T_stg</td>
<td>storage temperature</td>
<td></td>
<td>−65</td>
<td>+100</td>
<td>°C</td>
</tr>
<tr>
<td>T_amb</td>
<td>operating ambient temperature</td>
<td></td>
<td>−40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Handling
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal handling precautions appropriate to handling MOS devices (see “Handling MOS Devices”).

characteristics

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
<td>supply voltage</td>
<td></td>
<td>2.4</td>
<td>−</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>V_TRIP</td>
<td>Voltage trip-point:</td>
<td>T_amb = 25 °C; note 1</td>
<td>4.70</td>
<td>4.75</td>
<td>4.80</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-0</td>
<td></td>
<td>4.50</td>
<td>4.55</td>
<td>4.60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-1</td>
<td></td>
<td>4.20</td>
<td>4.25</td>
<td>4.30</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-2</td>
<td></td>
<td>4.00</td>
<td>4.05</td>
<td>4.10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-3</td>
<td></td>
<td>3.70</td>
<td>3.75</td>
<td>3.80</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-4</td>
<td></td>
<td>3.50</td>
<td>3.55</td>
<td>3.60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-5</td>
<td></td>
<td>3.20</td>
<td>3.25</td>
<td>3.30</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-6</td>
<td></td>
<td>3.00</td>
<td>3.05</td>
<td>3.10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-7</td>
<td></td>
<td>2.70</td>
<td>2.75</td>
<td>2.80</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-8</td>
<td></td>
<td>2.50</td>
<td>2.55</td>
<td>2.60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PCF1252-9</td>
<td></td>
<td>−</td>
<td>10</td>
<td>15</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_DD</td>
<td>supply current</td>
<td></td>
<td>−</td>
<td>10</td>
<td>15</td>
<td>µA</td>
</tr>
<tr>
<td>ΔV_TRIP</td>
<td>voltage trip-point temperature coefficient</td>
<td>note 2</td>
<td>±100 × 10⁻⁶</td>
<td>±400 × 10⁻⁶</td>
<td>mV/K</td>
<td></td>
</tr>
<tr>
<td>V_hys</td>
<td>voltage trip-point hysteresis</td>
<td></td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>mV</td>
</tr>
</tbody>
</table>
Threshold detector and reset generator

PCF1252-X family

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V SP</td>
<td>COMIN switch point</td>
<td>T_{amb} = 25 °C; note 1</td>
<td>1.28</td>
<td>1.30</td>
<td>1.32</td>
<td>V</td>
</tr>
<tr>
<td>ΔV SP</td>
<td>COMIN switch point temperature coefficient</td>
<td>note 2</td>
<td>–</td>
<td>±0.1</td>
<td>±0.5</td>
<td>mV/K</td>
</tr>
<tr>
<td>SELECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V IL</td>
<td>LOW level input voltage</td>
<td>–</td>
<td>–</td>
<td>0.3V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V IH</td>
<td>HIGH level input voltage</td>
<td>0.7V_{DD}</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>SELECT and COMIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I LI</td>
<td>LOW level leakage input current</td>
<td>–</td>
<td>–</td>
<td>–1.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I LI</td>
<td>HIGH level leakage input current</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>POWF, RESET and COMOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I O</td>
<td>output sink current</td>
<td>V O = 0.4 V; V_{DD} = 2.4 V; see Fig.6</td>
<td>1</td>
<td>3</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>I O</td>
<td>output source current</td>
<td>V O = 2.0 V; V_{DD} = 2.4 V; see Fig.7</td>
<td>–0.75</td>
<td>–2</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>t R</td>
<td>reset time</td>
<td>C_{CT} = 1 nF; note 3</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>μs</td>
</tr>
<tr>
<td>t S</td>
<td>save time</td>
<td>C_{CT} = 1 nF; note 3</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>μs</td>
</tr>
<tr>
<td>t R/t S</td>
<td>reset to save time ratio</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>C_{int}</td>
<td>CT internal capacitance</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Long time stability of COMIN switch point V SP and voltage trip point V TRIP: within 10 years of continuous operation at V_{DD(max)} and an average operating temperature of 55 °C the drift of V SP will not exceed ±10 mV. The maximum drift for V TRIP will not exceed (±V_{TRIP typ}/V SP typ) 10 mV.
2. Values given per degree Kelvin; tested on a sample basis.
3. Conformance to these specifications is only guaranteed if the slew rate of V_{DD} is less than 25 V/ms.
supply voltage

typ. = 0.6 V

reset time (duration of reset pulse).

tS = save time (time between assertion of POWF and assertion of the reset output). This time can be used for storing of critical data and orderly system shut-down.

Vhys = hysteresis voltage (prevents oscillation around Vtrip).

Fig.3 Timing diagram.
Threshold detector and reset generator
PCF1252-X family

Typical performance characteristics

Fig. 4 Supply current as a function of temperature; $V_{DD} = 5 \text{ V}$; COMIN = V_{DD}.

Fig. 5 Supply current as a function of the supply voltage; $T_{amb} = +25 \degree \text{C}$.

Fig. 6 Output sink current as a function of the output voltage.

Fig. 7 Output source current as a function of the output voltage.
Threshold detector and reset generator

PCF1252-X family

Fig. 8 Reset and save times as a function of the external capacitor (C_{CT}).

APPLICATION INFORMATION

Fig. 9 Typical power-on reset circuit for a microcontroller/microprocessor system; (when not used, COMIN must be connected to V_{DD}).
Threshold detector and reset generator

Fig. 10 Data retention circuit for memory back-up systems.

Fig. 11 Data retention circuit with external switchable reset for systems with a single voltage supply.

(1) For external reset application, the SELECT input must be debounced.
Threshold detector and reset generator
PCF1252-X family

PACKAGE OUTLINES

DIP8: plastic dual in-line package; 8 leads (300 mil)

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A₁ max.</th>
<th>A₂ max.</th>
<th>b</th>
<th>b₁</th>
<th>b₂</th>
<th>c</th>
<th>D(1)</th>
<th>E(1)</th>
<th>e₁</th>
<th>L</th>
<th>Mₑ</th>
<th>Mₕ</th>
<th>w</th>
<th>Z(1) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>4.2</td>
<td>0.51</td>
<td>3.2</td>
<td>1.73</td>
<td>0.53</td>
<td>0.38</td>
<td>1.07</td>
<td>0.36</td>
<td>0.23</td>
<td>9.8</td>
<td>6.48</td>
<td>2.54</td>
<td>7.62</td>
<td>3.60</td>
<td>8.25</td>
</tr>
<tr>
<td>inches</td>
<td>0.17</td>
<td>0.020</td>
<td>0.13</td>
<td>0.068</td>
<td>0.045</td>
<td>0.021</td>
<td>0.042</td>
<td>0.014</td>
<td>0.009</td>
<td>0.39</td>
<td>0.26</td>
<td>0.10</td>
<td>0.30</td>
<td>0.14</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION | REFERENCES | EUROPEAN PROJECTION | ISSUE DATE
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT97-1</td>
<td>050G01</td>
<td>MO-001AN</td>
<td>92-11-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95-02-04</td>
</tr>
</tbody>
</table>

1998 Apr 16
Threshold detector and reset generator PCF1252-X family

SO8: plastic small outline package; 8 leads; body width 3.9 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>bP</th>
<th>c</th>
<th>D(1)</th>
<th>E(2)</th>
<th>e</th>
<th>HE</th>
<th>L</th>
<th>LP</th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>Z(1)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.75</td>
<td>0.25</td>
<td>1.45</td>
<td>0.25</td>
<td>0.49</td>
<td>0.25</td>
<td>5.0</td>
<td>4.0</td>
<td>3.8</td>
<td>1.27</td>
<td>6.2</td>
<td>5.8</td>
<td>1.05</td>
<td>0.25</td>
<td>0.25</td>
<td>0.7</td>
<td>0.3</td>
<td>8°</td>
</tr>
<tr>
<td>inches</td>
<td>0.069</td>
<td>0.010</td>
<td>0.057</td>
<td>0.01</td>
<td>0.019</td>
<td>0.0100</td>
<td>0.20</td>
<td>0.16</td>
<td>0.050</td>
<td>0.244</td>
<td>0.041</td>
<td>0.039</td>
<td>0.028</td>
<td>0.01</td>
<td>0.01</td>
<td>0.004</td>
<td>0.028</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION

| SOT96-1 | 076E03S | MS-012AA |

REFERENCES

| EIEC | JEDEC | EIAJ |

EUROPEAN PROJECTION

95-02-04 97-05-22

ISSUE DATE

1998 Apr 16

11
SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (Tstg max). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

SO

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
DEFINITIONS

Data sheet status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
Philips Semiconductors – a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH HYDE, NSW 2113, Tel. +61 2 9885 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bd. 3, r. 1211, Volodarski Str. 6, 2200050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/ COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: Tel. +57 3 542 5040, Fax. +57 3 542 5040
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811
Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAIPUR 30201, Tel. +62 21 794 0040 ext. 2581, Fax. +62 21 794 0080
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 00199 ROMA, Tel. +39 06 468 244, Fax. +39 06 468 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-gu, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9 5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukosia 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Montlane, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allendesstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPei, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 025042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: Philips, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax. +381 11 635 777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other intellectual or industrial property rights.

Printed in The Nether lands

Date of release: 1998 Apr 16
Document order number: 9397 750 03645